• Title/Summary/Keyword: direct digital radiography

Search Result 59, Processing Time 0.022 seconds

Assessing changes of peri-implant bone using digital subtraction radiography

  • Kwon Ji-Yung;Kim Yung-Soo;Kim Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.3
    • /
    • pp.273-281
    • /
    • 2001
  • Digital subtraction radiography may be one of the most precise and noninvasive methods for assessing subtle density changes in peri-implant bone, providing additional diagnostic information on implant tissue integration in overall maintenance. The aims of this study were to evaluate density changes after first, second surgery of dental implant and to measure the amount of marginal bone loss 9 months after second surgery using digital subtraction radiography. Bone change around 30 screw-shaped implants in 16 patients were assessed on radiographs. 17 Branemark implants of 3.75mm in diameter(Nobel Biocare, Goteborg, Sweden), 2 Branemark implants of 5.0mm in diameter, 11 $Replace^{TM}$ implants of 4.3mm in diameter(Nobel Biocare, Goteborg, Sweden) were used. To standardize the projection geometry of serial radiographs of implants, customized bite block was fabricated using XCP film holder(Rinn Corporation, Elgin, IL.) with polyether impression material of Impregum(ESPE, Germany) and direct digital image was obtained. Qualitative and quantitative changes on radiographs were measured with Emago software(The Oral Diagnostic System, Amsterdam, Netherlands). The results were as follows: 1. The peri-implant bone density of 69.2% implants did not change and the peri-implant bone density of 30.8% implants decreased after 3 months following first surgery. 2. The crestal bone density of 53.9% implants decreased first 3 months after second surgery. The crestal bone density of 58.8% implants increased 9 months after second surgery. No density change was observed around the midportion of the implants after second surgery, 3. The amount of marginal bone loss between different kinds of implants showed no statistically significant differences (p>0.05). 4. More than 90% of total marginal bone loss recorded in a 9-month period occurred during the first 3 months.

  • PDF

Artifact Reduction in Digital Radiography Images with the Stationary Grid Based on 1-Dimensional Filters (고정 그리드를 사용한 디지털 방사선 영상에서 1차원 필터에 기초한 왜곡의 제거)

  • Kim, Dong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.117-126
    • /
    • 2010
  • In order to obtain more clear x-ray images, an antiscatter grid, which can absorb the scattered rays, is employed. In the high-resolution direct digital radiography, however, the artifacts due to the grid are visible. In this paper, the grid artifacts are reduced by applying simple 1-dimensional low-pass filters in the spatial domain based on the rotated grid. Since the proposed algorithm does not use any detection scheme for the artifact frequencies and discrete Fourier transforms for 2-dimensional filters, it can simply and fast reduce the grid artifacts. The performance using the order 1 average filter is compatible to that of using 2-dimensional filters in the frequency domain.

Quantitative Analysis and Comparison of DR and CR image quality (CR과 DR 영상화질의 정량적 비교분석)

  • Park, Hey-Suk;Seo, Jang-Yeon;Jeong, Jin-Hwa;Lee, Chang-Lae;Cho, Hyo-Min;Kim, Hee-Joung
    • Journal of the Korean Society of Radiology
    • /
    • v.1 no.1
    • /
    • pp.31-37
    • /
    • 2007
  • The purpose of this research was to compare and analyze image quality for each Detector of CR(Computed Radiography) and DR(Digital Radiography). The results showed that CR(AGFA MD 4.0 General plate, JAPAN) was superior to DR(HOLOGIC nDirect Ray, USA) based on the quantitative values and comparison of MTF(Modulation Transfer Function), NPS(Noise Power Spectrum), Photon fluence and DQE(Detective Quantum Efficiency) which have been widely accepted for the estimation of CR and DR. Quantitative evaluations of CR and DR system were obtained and they may be very helpful for QA and QC of general X-ray systems.

  • PDF

Proposed Institutional Diagnostic Reference Levels in Computed and Direct Digital Radiography Examinations in Two Teaching Hospitals

  • Emmanuel Gyan;George Amoako;Stephen Inkoom;Christiana Subaar;Barry Rahman Maamah
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.1
    • /
    • pp.9-14
    • /
    • 2023
  • Background: The detectors of both computed radiography (CR) and direct digital radiography (DR) have a wide dynamic range that could tolerate high values of exposure factors without an adverse effect on image quality. Therefore, this study aims to assess patient radiation dose and proposes institutional diagnostic reference levels (DRLs) for two teaching hospitals in Ghana. Materials and Methods: CR and DR systems were utilized in this study from two teaching hospitals. The CR system was manufactured by Philips Medical Systems DMC GmbH, while the DR system was manufactured by General Electric. The entrance skin doses (ESDs) were calculated using the standard equation and the tube output measurements. Free-in-air kerma (µGy) was measured using a calibrated radiation dosimeter. The proposed institutional DRLs were estimated using 75th percentiles values of the estimated ESDs for nine radiographic projections. Results and Discussion: The calculated DRLs were 0.4, 1.6, 3.4, 0.5, 0.4, 1.1, 1.0, 1.2, and 1.7 mGy for chest posteroanterior (PA), lumbar spine anteroposterior (AP), lumbar spine lateral (LAT), cervical spine AP, cervical spine LAT, skull PA, pelvis AP, and abdomen AP, respectively in CR system. In the DR system, the values were 0.3, 1.6, 3.1, 0.4, 0.3, 0.7, 0.6, 0.9, and 1.3 for chest PA, lumbar spine AP, lumbar spine LAT, cervical spine AP, cervical spine LAT, skull PA, pelvis AP, and abdomen AP, respectively. Conclusion: Institutional DRLs in nine radiographic projections have been proposed for two teaching hospitals in Ghana for the first time. The proposed DRLs will serve as baseline data for establishing local DRLs in the hospitals and will be a valuable tool in optimizing patient doses.

Image Quality Evaluation of Medical Image Enhancement Parameters in the Digital Radiography System (디지털 방사선시스템에서 영상증강 파라미터의 영상특성 평가)

  • Kim, Chang-Soo;Kang, Se-Sik;Ko, Seong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.329-335
    • /
    • 2010
  • Digital imaging detectors can use a variety of detection materials to convert X-ray radiation either to light or directly to electron charge. Many detectors such as amorphous silicon flat panels, CCDs, and CMOS photodiode arrays incorporate a scintillator screen to convert x-ray to light. The digital radiography systems based on semiconductor detectors, commonly referred to as flat panel detectors, are gaining popularity in the clinical & hospital. The X-ray detectors are described between a-Silicon based indirect type and a-Selenium based direct type. The DRS of detectors is used to convert the x-ray to electron hole pairs. Image processing is described by specific image features: Latitude compression, Contrast enhancement, Edge enhancement, Look up table, Noise suppression. The image features are tuned independently. The final enhancement result is a combination of all image features. The parameters are altered by using specific image features in the different several hospitals. The image in a radiological report consists of two image evaluation processes: Clinical image parameters and MTF is a descriptor of the spatial resolution of a digital imaging system. We used the edge test phantom and exposure procedure described in the IEC 61267 to obtain an edge spread function from which the MTF is calculated. We can compare image in the processing parameters to change between original and processed image data. The angle of the edge with respect to the axes of detector was varied in order to determine the MTF as a function of direction. Each MTF is integrated within the spatial resolution interval of 1.35-11.70 cycles/mm at the 50% MTF point. Each image enhancement parameters consists of edge, frequency, contrast, LUT, noise, sensitometry curve, threshold level, windows. The digital device is also shown to have good uniformity of MTF and image parameters across its modality. The measurements reported here represent a comprehensive evaluation of digital radiography system designed for use in the DRS. The results indicate that the parameter enables very good image quality in the digital radiography. Of course, the quality of image from a parameter is determined by other digital devices in addition to the proper clinical image.

The transport property of direct conversion material a-Se:As film for digital radiography

  • Kim, Jae-Hyung;Park, Chang-Hee;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.343-344
    • /
    • 2007
  • Carrier mobility was measured using time-of-flight (TOF) measurements to investigate the transport properties of holes and electrons in stabilized a-Se film. A laser beam with pulse duration of 5 ns and wavelength of 350 nm was illuminated on the surface of a-Se with thickness of $400\;{\mu}m$. The measured transit times of hole and electron were about $8.73\;{\mu}s\;and\;229.17\;{\mu}s$, respectively. The experimental results showed that the hole and electron drifting mobility were $0.04584\;cm^2V^{-1}S^{-1}\;and\;0.00174\;cm^2V^{-1}s^{-1}\;at\;10\;V/{\mu}m$.

  • PDF

The Evaluation of CR and DDR chest image using ROC analysis (ROC평가 방법을 이용한 CR과 DDR 흉부 영상의 비교)

  • Park, Yeon-Ok;Jung, Eun-Kyung;Park, Yeon-Jung;Nam, So-Ra;Jung, Ji-Young;Kim, Hee-Joung
    • Journal of the Korean Society of Radiology
    • /
    • v.1 no.1
    • /
    • pp.25-30
    • /
    • 2007
  • ROC(Receiver Operating Characteristic)curve is the method that estimate detected insignificant signal from the human's sense of sight, it has been raised excellent results. In this study, we evaluate image quality and equipment character by obtaining a chest image from CR(Computed Radiography) and DDR(Direct Digital radiography) using the human chest phantom, The parameter of exposure for obtaining chest image was 120 kVp/3.2 mAs and the SID(Source to Image Distance) was 180cm. The images were obtained by CR(AGFA MD 4.0 General plate, JAPAN) and DDR(HOLOGIC nDirect Ray, USA). Using some pieces of Aluminum and stone for expressing regions, then attached them on the heart, lung and thoracic vertebrae of the phantom. 29 persons hold radiology degrees were participated in ROC analysis. As a result of the ROC analysis, TPF(true positive fraction) and FPF(false positive fraction) of DDR and CR are 0.552 and 0.474 and 0.629 and 0.405, respectively. By using the results, the ROC curve of CR has higher image quality than DDR. According to the theory, DDR has the higher image quality than CR in chest X-ray image. But, CR has the higher image quality than DDR. quality of DDR inserted the enhance board. The results confirmed that image post-processing is important element decipherment of clinical.

  • PDF

The Study on Composition ratio of Iodine in Hybrid X-ray Sensor (혼합형 X선 센서에서 a-Se 의 Iodine 첨가비 연구)

  • Gong, Hyung-Gi;Park, Ji-Koon;Choi, Jang-Yong;Moon, Chi-Wung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.366-369
    • /
    • 2002
  • At present, the study of direct digital X-ray detector and indirect digital X-ray detector proceed actively. But it needs high thickness and high voltage in selenium for high ionization rate. Therefore, we carried out the study of electric characteristics of a-Se with additive ratio of Iodine in drafting study for developing Hybrid X -ray Sensor for complementing direct digital X -ray detector and indirect digital X-ray detector in this paper. On this, there are formed Amorphous selenium multi-layers by sticking phosphor layer$(Gd_{2}O_{2}S(Eu^{2+}))$ using optical adhesives of EFIRON Co. Amorphous selenium multi-layers having dielectric layer(parylene) has characteristics of low dark-current, high X-ray sensitivity. So we can acquired a enhanced signal to noise ratio. We make Amorphous selenium multi-layers with $30{\mu}m$ thickness on glass.

  • PDF

Structural Design of Digital Radiography Detector using Hybrid Method for the Improvement of Response Property by X-ray (X-ray 반응 특성 개선을 위한 Hybrid형 디지털 방사선 검출기의 구조 설계)

  • Kim, Kyo-Tae;Han, Moo-Jae;Kim, Jin-Seon;Heo, Ye-Ji;Oh, Kyung-Min;Park, Ji-Koon;Nam, Sang-Hee
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.363-367
    • /
    • 2015
  • Digital radiography is divided into the direct method using photoconductor and indirect method using phosphor based on the principles in acquiring the image information, but both have different advantages and disadvantages. Therefore, this study conducted a preliminary research on the structure of the hybrid detector that combined phosphor and photoconductor to improve the sensitivity of X-ray. As a result, when the tube voltage was adjusted at 30ms of exposure time, the direct structure displayed an overall excellent sensitivity, but at the exposure time of 50ms or more, the hybrid structure displayed a better outcome. This seems to have enough research value considering that various clinical examinations usually include 50ms or more exposure time.

Measurements of simulated periodontal bone defects in inverted digital image and film-based radiograph: an in vitro study

  • De Molon, Rafael Scaf;Morais-Camillo, Juliana Aparecida Najarro Dearo;Sakakura, Celso Eduardo;Ferreira, Mauricio Goncalves;Loffredo, Leonor Castro Monteiro;Scaf, Gulnara
    • Imaging Science in Dentistry
    • /
    • v.42 no.4
    • /
    • pp.243-247
    • /
    • 2012
  • Purpose: This study was performed to compare the inverted digital images and film-based images of dry pig mandibles to measure the periodontal bone defect depth. Materials and Methods: Forty 2-wall bone defects were made in the proximal region of the premolar in the dry pig mandibles. The digital and conventional radiographs were taken using a Schick sensor and Kodak F-speed intraoral film. Image manipulation (inversion) was performed using Adobe Photoshop 7.0 software. Four trained examiners made all of the radiographic measurements in millimeters a total of three times from the cementoenamel junction to the most apical extension of the bone loss with both types of images: inverted digital and film. The measurements were also made in dry mandibles using a periodontal probe and digital caliper. The Student's t-test was used to compare the depth measurements obtained from the two types of images and direct visual measurement in the dry mandibles. A significance level of 0.05 for a 95% confidence interval was used for each comparison. Results: There was a significant difference between depth measurements in the inverted digital images and direct visual measurements (p>|t|=0.0039), with means of 6.29 mm ($IC_{95%}$:6.04-6.54) and 6.79 mm ($IC_{95%}$:6.45-7.11), respectively. There was a non-significant difference between the film-based radiographs and direct visual measurements (p>|t|=0.4950), with means of 6.64mm($IC_{95%}$:6.40-6.89) and 6.79mm($IC_{95%}$:6.45-7.11), respectively. Conclusion: The periodontal bone defect measurements in the inverted digital images were inferior to film-based radiographs, underestimating the amount of bone loss.