• Title/Summary/Keyword: direct air capture (DAC)

Search Result 4, Processing Time 0.017 seconds

Membrane-Based Direct Air Capture: A Review (막 기반 직접공기포집: 총설)

  • Seong Baek Yang;Kwang-Seop Im;Km Nikita;Sang Yong Nam
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.85-95
    • /
    • 2024
  • Direct air capture (DAC) technology plays a crucial role in mitigating climate change. Reports from the International Energy Agency and climate change emphasize its significance, aiming to limit global warming to 1.5 ℃ despite continuous carbon emissions. Despite initial costs, DAC technology demonstrates potential for cost reductions through research and development, operational learning, and economies of scale. Recent advancements in high-permeance polymer membranes indicate the potential of membrane-based DAC technology. However, effective separation of CO2 from ambient air requires membranes with high selectivity and permeability to CO2. Current research is focusing on membrane optimization to enhance CO2 capture efficiency. This study underscores the importance of direct air capture, evolving cost trends, and the pivotal role of membrane development in climate change mitigation efforts. Additionally, this research delved into the theoretical background, conditions, composition, advantages, and disadvantages of permeance and selectivity in membrane-based DAC.

Membrane-based Direct Air Capture Technologies (분리막을 이용한 공기 중 이산화탄소 제거 기술)

  • Yoo, Seung Yeon;Park, Ho Bum
    • Membrane Journal
    • /
    • v.30 no.3
    • /
    • pp.173-180
    • /
    • 2020
  • As the demand for fossil fuels continues to increase worldwide, carbon dioxide (CO2) concentration in the air has increased over the centuries. The way to reduce CO2 emissions to the atmosphere, carbon capture and sequestration (CCS) technology have been developed that can be applied to power plants and factories, which are primary emission sources. According to the climate change mitigation policy, direct air capture (DAC) in air, referred to as "negative emission" technology, has a low CO2 concentration of 0.04%, so it is focused on adsorbent research, unlike conventional CCS technology. In the DAC field, chemical adsorbents using CO2 absorption, solid absorbents, amine-functionalized materials, and ion exchange resins have been studied. Since the absorbent-based technology requires a high-temperature heat treatment process according to the absorbent regeneration, the membrane-based CO2 capture system has a great potential Membrane-based system is also expected for indoor CO2 ventilation systems and immediate CO2 supply to smart farming systems. CO2 capture efficiency should be improved through efficient process design and material performance improvement.

Beyond Net Zero - SOM's Urban Sequoia Building Concept and Technologies for Future, Regenerative Cities

  • Mina Hasman;Jiejing Zhou;Alice Guarisco;Nicholas Chan;Alessandro Beghini;Zhaofan Li;Michael Cascio;Yasemin Kologlu
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.2
    • /
    • pp.121-128
    • /
    • 2023
  • Cities cover only 3% of the planet's surface, yet they are responsible for more than 75% of the global emissions. Given the projected urban built area will double by 2060, the carbon emitted from cities will further increase. SOM proposes the Urban Sequoia concept, for buildings that go beyond 'net zero' and absorb carbon from the atmosphere. This concept combines multiple strategies, including the use of an optimised building form with a highly efficient structural system, modularized prefabrication techniques, holistic integration of facade, MEP and interiors' components, bio-based materials, and Direct Air Capture (DAC) technology, to reduce a 40-storey building's whole life cycle carbon emissions by more than 300% over a 100-year lifespan. Calculations of embodied carbon emissions are performed with SOM's in-house Environmental Analysis (EA) Tool to demonstrate the effectiveness of employing Urban Sequoia's design strategies in the design of new buildings using current technologies.

Ambient CO2 Adsorption and Regeneration Performance of Zeolite and Activated Carbon (제올라이트와 활성탄을 이용한 대기 중 CO2 흡착 및 재생 특성)

  • Park, Il-Gun;Hong, Min-Sun;Kim, Byum-Seok;Kang, Ho-Geun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.5
    • /
    • pp.307-311
    • /
    • 2013
  • Direct Air Capture (DAC) technology using reusable energy is a plausible process to capture $CO_2$ from non-point sources. In this paper, adsorption and desorption were repeatedly tested using low concentration $CO_2$. Three types of adsorbents were examined in cyclic $CO_2$ adsorption and thermal regeneration. Adsorption capacities of zeolite 5A, zeolite 13X and activated carbon were 21 mg/g, 12 mg/g and 6 mg/g, respectively. Zeolite 5A shows the highest adsorption capacities after cyclic thermal regeneration.