• 제목/요약/키워드: dioxin-response element

검색결과 4건 처리시간 0.024초

Suppression of CYP1A1 Expression by Naringenin in Murine Hepa-1c1c7 Cells

  • Kim, Ji-Young;Han, Eun-Hee;Shin, Dong-Weon;Jeong, Tae-Cheon;Lee, Eung-Seok;Woo, Eun-Rhan;Jeong, Hye-Gwang
    • Archives of Pharmacal Research
    • /
    • 제27권8호
    • /
    • pp.857-862
    • /
    • 2004
  • Naringenin, dietary flavonoid, is antioxidant constituents of many citrus fruits. In the present study, we investigated the effect of naringenin on 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible CYP1 A 1 gene expression in mouse hepatoma Hepa-1c1c7 cells. Naringenin alone did not affect CYP1A1-specific 7-ethoxyresorufin O-deethylase (EROD) activity. In contrast, the TCDD-inducible EROD activities were markedly reduced upon concomitant treatment with TCDD and naringenin in a dose dependent manner. TCDD-induced CYP1A1 mRNA level was also markedly suppressed by naringenin. A transient transfection assay using dioxin-response element (DRE)-linked luciferase and electrophoretic mobility shift assay revealed that naringe-nin reduced transformation of the aryl hydrocarbons receptor(AhR) to a form capable of specif-ically binding to the DRE sequence in the promoter of the CYP1A1 gene. These results suggest the down regulation of the CYP1A1 gene expression by either naringenin in Hepa-1c1c7 cells might be antagonism of the DRE binding potential of nuclear AhR.

Estrogen Inhibits Bcl-2 Expression and Stimulates Apoptosis Mediated by 2,3,7,8-Tetrachlrodibenzo-p-dioxirn

  • Hwang, Sohyun;Such, Jaehong;Byun, Boo-Hyeong;Joe, Cheol O.
    • Toxicological Research
    • /
    • 제19권4호
    • /
    • pp.325-330
    • /
    • 2003
  • The effects of estrogen on apoptosis induced by 2,3,7,8-tetrachlorodibenzo-p-doxin (TCDD) were examined in cultured MCF-7 cells. TCDD stimulated apoptosis and inhibited the expression of bcl-2 gene in MCF-7 cells grown in the media supplemented with 10% fetal bovine serum. However, TCDD failed to induce apoptosis if cells were grown in the media deprived of all estrogen-like compounds. Removal of estrogen-like compounds from the growth media also led to the activation of bcl-2 gene expression in cells treated with TCDD. Combined treatment of estrogen with TCDD abrogated the binding of Aryl hydrocarbon Receptor (AhR)-TCDD complex to Dioxin response element (DRE) of bcl-2 gene leading to the inhibition of bcl-2 gene expression as well as stimulation of apoptosis. The present study suggests that the binding of estrogen receptor (ER)-estrogen complex to the estrogen responsive element (E) interferes with the binding of AhR- TCDD complex to the DRE and inhibits the bcl-2 expression.

Effect of Biochanin A on the Aryl Hydrocarbon Receptor and Cytochrome P450 1A1 in MCF-7 Human Breast Carcinoma Cells

  • Han, Eun-Hee;Kim, Ji-Young;Jeong, Hye-Gwang
    • Archives of Pharmacal Research
    • /
    • 제29권7호
    • /
    • pp.570-576
    • /
    • 2006
  • Phytoestrogen biochanin A is an isoflavone derivative isolated from red clover Trifolium pratense with anticarcinogenic properties. This study examined the action of biochanin A with the carcinogen activation pathway that is mediated by the aryl hydrocarbon receptor (AhR) in MCF-7 breast carcinoma cells. Treating the cells with biochanin A alone caused the accumulation of CYP1A1 mRNA and an increase in CYP1A1-specific 7-ethoxyresorufin O-deethylase (EROD) activity in a dose dependent manner. A concomitant treatment with 7,12-dimethylbenz[a]anthracene (DMBA) and biochanin A markedly reduced the DMBA-inducible EROD activity and CYP1A1 mRNA level. In addition, the biochanin A treatment alone activated the DNA-binding capacity of the AhR for the dioxin-response element (DRE) of CYP1A1, as measured by the electrophoretic-mobility shift assay (EMSA). EMSA revealed that biochanin A reduced the level of the DMBA-inducible AhR-DRE binding complex. Furthermore, biochanin A competed with the prototypical AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), for binding to the AhR in an isolated rat cytosol. The biochanin A competitively inhibited the metabolic activation of DMBA, as measured by the formation of the DMBA-DNA adducts. These results suggest that biochanin A may thus be a natural ligand to bind on AhR. Therefore, biochanin A may be due to act an antagonist/agonist of the AhR pathway.