• Title/Summary/Keyword: diode laser

Search Result 1,017, Processing Time 0.027 seconds

Ultra High-speed 3-dimensional Profilometry Using a Laser Grating Projection System

  • Park, Yoon-Chang;Ahn, Seong-Joon;Kang, Moon-Ho;Kwon, Young-Chul;Ahn, Seung-Joon
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.464-467
    • /
    • 2009
  • The grating projection method with phase-shifting technique is very useful in measuring the 3-dimensional (3D) shape with high accuracy and speed. In this work, we have developed an ultra high-speed digital laser grating projection system using a high-power laser diode and a highsensitivity CMOS camera. With our system, the optical measurement required to find out the profile of a 3D object could be carried out within 2.6 ms, which is a significant ($\sim$10 times) improvement compared with those of the previous studies.

Highly (111)-oriented SiC Films on Glassy Carbon Prepared by Laser Chemical Vapor Deposition

  • Li, Ying;Katsui, Hirokazu;Goto, Takashi
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.647-651
    • /
    • 2016
  • SiC films were prepared on glassy carbon substrates by laser chemical vapor deposition under a high pressure of $10^4Pa$ using a diode laser (wavelength = 808 nm) and a polysilaethylene precursor. (111)-oriented SiC films were formed at a deposition temperature ($T_{dep}$) range of 1150 - 1422 K. At $T_{dep}=1262K$, the SiC film with a high Lotgering factor of above 0.96 showed an exhibited pyramid-like surface morphology and flower-like grains. The highest deposition rate ($R_{dep}$) was $220{\mu}m\;h^{-1}$ at $T_{dep}=1262K$.

Frequency Stabilization of Femtosecond Lasers for Dimensional Metrology (거리 및 형상 측정을 위한 펨토초 레이저의 주파수 안정화)

  • Kim Young-Jin;Jin Jong-Han;Kim Seung-Woo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.188-191
    • /
    • 2005
  • A common feature in various methods of optical interferometry for absolute distance measurements is the use of multiple monochromatic light components either in sequence or in parallel at the same time. Two or multiple wavelength synthesis has been studied though its performance is vulnerable to the frequency instability of the light source. Recently continuous frequency modulation is considered a promising method with availability of wide band tunable diode lasers, which also have frequency instability errors. We can lock frequencies of these third-party light sources to the modes of the femtosecond laser which is stabilized to the precision of the standard radio frequency. To this end, we have stabilized all the modes of the femtosecond laser to the atomic frequency standard by using powerful tools of frequency-domain laser stabilization.

  • PDF

Application of Photobiomodulation in Hearing Research: Animal Study

  • Lee, Jae-Hun;Jung, Jae Yun
    • Medical Lasers
    • /
    • v.9 no.1
    • /
    • pp.1-5
    • /
    • 2020
  • Hearing organs have unique characteristics and have a role in processing external sensory signals. Sensory hair cells and nerve fibers in the organ of Corti can be damaged by various causes and they do not regenerate themselves. Medication used for clinical treatment for the inner ear is limited due to the anatomical structure of the inner ear. Photobiomodulation (PBM) is a therapeutic approach that uses various sources of light and the success of PBM therapy is highly reliant on the parameters of the light sources. The positive effects of PBM have been reported in various clinical fields. This paper summarizes the previously reported research on PBM for the treatment of hearing damage in animal models.

Numerical Simulation of Soliton-like Pulse Formation in Diode-pumped Yb-doped Solid-state Lasers

  • Seong-Yeon, Lee;Byeong-Jun, Park;Seong-Hoon, Kwon;Ki-Ju, Yee
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.90-96
    • /
    • 2023
  • We numerically solve the nonlinear Schrödinger equation for pulse propagation in a passively mode-locked Yb:KGW laser. The soliton-like pulse formation as a result of balanced negative group-delay dispersion (GDD) and nonlinear self-phase modulation is analyzed. The cavity design and optical parameters of a previously reported high-power Yb:KGW laser were adopted to compare the simulation results with experimental results. The pulse duration and energy obtained by varying the small-signal gain or GDD reproduce the overall tendency observed in the experiments, demonstrating the reliability and accuracy of the model simulation and the optical parameters.

Design and Analysis of Displacement/Length Measuring System Using Laser Interferometry (광간섭법을 이용한 변위/길이 측정시스템의 설계 및 해석)

  • Kim, J.S.;Kim, S.C.;Chung, S.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.151-156
    • /
    • 1997
  • A laser measurement system, a modified Michelson interferometer, which can accurately measure high speed length and displacement of servomechanisms by detecting a phase shift in the measurement beam using an optical interference was developed. A frequency stabilized laser source and a 20 fold frequency interpolation and digitizing circuit were applied to the system. The refra- ctive index of the ambient air was calibrated through the Edlens formula. The system achieved a resolution of /40, 16nm, a maximum allow-able measurement speed of 600nm/sec, and a length measure- ment range of 1500 mm. Performance of the system was evaluated on the machining center in short and long length measurements.

  • PDF

Development of 3D Scanner Based on Laser Structured-light Image (레이저 구조광 영상기반 3차원 스캐너 개발)

  • Ko, Young-Jun;Yi, Soo-Yeong;Lee, Jun-O
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.186-191
    • /
    • 2016
  • This paper addresses the development of 3D data acquisition system (3D scanner) based laser structured-light image. The 3D scanner consists of a stripe laser generator, a conventional camera, and a rotation table. The stripe laser onto an object has distortion according to 3D shape of an object. By analyzing the distortion of the laser stripe in a camera image, the scanner obtains a group of 3D point data of the object. A simple semiconductor stripe laser diode is adopted instead of an expensive LCD projector for complex structured-light pattern. The camera has an optical filter to remove illumination noise and improve the performance of the distance measurement. Experimental results show the 3D data acquisition performance of the scanner with less than 0.2mm measurement error in 2 minutes. It is possible to reconstruct a 3D shape of an object and to reproduce the object by a commercially available 3D printer.

High-speed angular-scan pulse-echo ultrasonic propagation imager for in situ non-destructive evaluation

  • Abbas, Syed H.;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.223-230
    • /
    • 2018
  • This study examines a non-contact laser scanning-based ultrasound system, called an angular scan pulse-echo ultrasonic propagation imager (A-PE-UPI), that uses coincided laser beams for ultrasonic sensing and generation. A laser Doppler vibrometer is used for sensing, while a diode pumped solid state (DPSS) Q-switched laser is used for generation of thermoelastic waves. A high-speed raster scanning of up to 10-kHz is achieved using a galvano-motorized mirror scanner that allows for coincided sensing and for the generation beam to perform two-dimensional scanning without causing any harm to the surface under inspection. This process allows for the visualization of longitudinal wave propagation through-the-thickness. A pulse-echo ultrasonic wave propagation imaging algorithm (PE-UWPI) is used for on-the-fly damage visualization of the structure. The presented system is very effective for high-speed, localized, non-contact, and non-destructive inspection of aerospace structures. The system is tested on an aluminum honeycomb sandwich with disbonds and a carbon fiber-reinforced plastic (CFRP) honeycomb sandwich with a layer overlap. Inspection is performed at a 10-kHz scanning speed that takes 16 seconds to scan a $100{\times}100mm^2$ area with a scan interval of 0.25 mm. Finally, a comparison is presented between angular-scanning and a linear-scanning-based pulse-echo UPI system. The results show that the proposed system can successfully visualize defects in the inspected specimens.

Hybrid (CNC+Laser) Process for Polymer Welding (하이브리드 방식 (CNC+Laser)을 이용한 폴리머용접공정)

  • Yoo, Jong-Gi;Lee, Choon-Woo;Choi, Hae-Woon
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.42-48
    • /
    • 2010
  • Polycarbonate (PC) and Acrylonitrile Butadiene Styrene (ABS) were welded by a combination of a diode laser and a CNC machining center. Laser beam delivered through the transparent PC and was absorbed in an opaque ABS. Polymers were melted and joined by absorbed and conducted heat. Experiments were carried out by varying working distance from 44mm to 50mm for the focus spot diameter control, laser input power from 10W to 25W, and scanning speed from 100 to 400mm/min. The weld bead and cross-section were analyzed for weld quality, and tensile results were presented through the joint force measurement. With focus distance at 48mm, laser power with 20W, and welding speed at 300mm/min, experimental results showed the best welding quality which bead size was measured to be 3.75mm. The shear strength at the given condition was $22.8N/mm^2$. Considering tensile strength of ABS is $43N/mm^2$, shear strength was sufficient to hold two materials. A single process was possible in a CNC machining system, surface processing, hole machining and welding. As a result, the process cycle time was reduced to 25%. Compared to a typical process, specimens were fabricated in a single process, with high precision.

Wettability Characteristics of the Laser Grooved Surfaces (Laser Groove 표면의 젖음 특성에 관한 연구)

  • Jang, Mu Yeon;Kim, Tae Wan
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.294-299
    • /
    • 2019
  • Most previous studies on water repellent surfaces using lasers rely on the use of pico- or femtosecond lasers. However, in industrial application, these methods have the disadvantages of high cost and low efficiency. In this study, we implement a hydrophobic surface using a high-power general-purpose diode laser. We have fabricated the microsurface using laser groove processing technology, and we present the correlation of wettability characteristics with space and width. The metal material is stainless steel (SUS 304), and the groove height during laser processing is set to $30{\mu}m$ to evaluate the wettability based on the gap and width of various grooves. Results show that the contact angle of the groove-shaped surface is increased by $40^{\circ}$ or more as compared with the surface without patterning, and the contact angle in the parallel direction is greater than that in the perpendicular direction. Results from contact angle hysteresis measurement experiments show that the groove width has a greater influence on the contact angle history than does the gap between grooves. In addition, the coating reveals that the contact angle can be increased using a chemical method and that the laser grooving process can further improve the wetting properties of the surface.