• Title/Summary/Keyword: dinospore

Search Result 7, Processing Time 0.018 seconds

Ecological Characteristics of the Endoparasitic Dinoflagellate, Amoebophrya sp. ex Heterocapsa triquetra Isolated from Jinhae Bay, Korea (진해만에서 분리한 기생성 와편모류 Amoebophrya sp. ex Heterocapsa triquetra의 생태특성)

  • Park , Jong-Gyu;Hur, Hyun-Jung;Coats, D.Wayne;Yih, Won-Ho
    • ALGAE
    • /
    • v.22 no.4
    • /
    • pp.287-295
    • /
    • 2007
  • Infection of free-living dinoflagellates by endoparasitic dinoflagellates of the genus Amoebophrya are thought to have significant impacts on host population dynamics and have long been proposed to be a potential biological agent for controlling harmful algal bloom (HAB). To understand the impact of Amoebophrya on particular host species, however, it is necessary to quantify aspects the parasites life cycle. Here we used cultures of Amoebophryahost systems from Jinhae Bay, Korea to determine, parasite generation time, and dinospore survival and infectivity. The proportion of host cells infected by Amoebophrya sp. changed sharply from 5% to 87% with increasing dinospore:host inoculation ratios. In the absence of H. triquetra, most free-living dinospores died within 72 hours and their ability to infect host cells decreased remarkably in a day. The relatively short free-living phase of Amoebophrya suggests that the spread of infections is most likely to occur during seasons of high host abundance, as that is when dinospores have the greatest chance of encountering host cells. Infection of host cells inoculated with dinospores during the day was higher than when inoculated during the night, suggesting that infection rates might be related to environmental light conditions and/or diurnal biological rhythm of host species. Total generation times of parasite strains from a thecate dinoflagellate Heterocapsa triquetra were nearly the same regardless of dinospore:host inoculation ratios, representing 54 ± 0.5 h in a 1:1 ratio and 55 ± 1.2 h in a 20:1 ratio. Dinospore production of Amoebophrya sp. infecting Heterocapsa triquetra was estimated to be 125 dinospores per a strain of Amoebophrya sp. There is a growing need to maintain a variety of host-parasite systems in culture and to examine their autecology under various environmental conditions. Such studies would be very helpful in understanding ecological role of these parasites, their overlooked importance in the flow of material and energy in marine ecosystem, and their practical use as biological control agents applied directly to areas affected by HAB.

Studies on the Features of Amyloodinium sp. Parasitized in Black Seabream, Acanthopagrus schlegeli (감성돔(Acanthopagrus schlegeli)에 기생한 Amyloodinium sp.의 성상에 관한 연구)

  • Ji, Bo-Young;Kim, Ki-Hong;Park, Soo-Il
    • Journal of fish pathology
    • /
    • v.11 no.1
    • /
    • pp.13-22
    • /
    • 1998
  • To know the features of Amyloodinium sp. parasitized in Black seabream, Acanthopagrus schlegeli, morphology and reproduction type of the parasite were investigated. Infection mode and histopathology of the parasites were also studied. In the developmental and morphological observation, the parasite passed through parasitic and non-parasitic phases with three developmental stages termed trophont, tomont, and dinospore. The trophont, 30-$80{\mu}m$ ovoidal or pyriform, for the vegetative stage had a spherical nucleus with $1.5{\mu}m$ in diameter, many food vacuoles and starch grains in cytoplasm. The tomont, 80-$90{\mu}m$ spherical, for the reproductive stage resorbed a stalk, secreted a cyst wall and reproduced within it. A dinospore, small 10-$15{\mu}m$ biflagellated, for the infestation stage had a stigma. The parasite was propagated for 15 days by serial passage in Korean rockfish (Sebastes schlegeli) at $25{\pm}1^{\circ}C$. Trophonts began to detach from the fish about 3 days after infection and was completed within 5 days at $25{\pm}1^{\circ}C$. It took from 3 to 5 days to reproduce at the same temperature. Reinfected fish showed that parasites penetrated under the epithelia of gill filament and gill lamellae causing hyperplasia and degeneration at infected area.

  • PDF

Physiological Ecology of parasitic Dinoflagellate Amoebophrya and Harmful Algal Blooms (기생성 와편모류 Amoebophrya의 생리 생태적 특성과 적조)

  • 박명길
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.181-194
    • /
    • 2002
  • Parasitism is a one-sided relationship between two organisms in which one benefits at the expense of the other. Parasitic dinoflagellates, particularly species of Amoebophrya, have long been thought to be a potential biological agent for controlling harmful algal bloom(HAB). Amoebophrya infections have been reported for over 40 species representing more than 24 dinoflagellate genera including a few toxic species. Parasitic dinoflagellates Amoebophrya spp. have a relatively simple life cycle consisting of an infective dispersal stage (dinospore), an intracellular growth stage(trophont), and an extracellular reproductive stage(vermiform). Biology of dinospores such as infectivity, survival, and ability to successfully infect host cells differs among dinoflagellate host-parasite systems. There are growing reports that Amoebophrya spp.(previously, collectively known as Amoebophrya ceratii) exhibit the strong host specificity and would be a species complex composed of several host-specific taxa, based on the marked differences in host-parasite biology, cross infection, and molecular genetic data. Dinoflagellates become reproductively incompetent and are eventually killed by the parasite once infected. During the infection cycle of the parasite, the infected host exhibits ecophysiologically different patterns from those of uninfected host in various ways. Photosynthetic performance in autotrophic dinoflagellates can be significantly altered following infection by parasitic dinoflagellate Amoebophrya, with the magnitude of the effects over the infection cycle of the parasite depending on the site of infection. Parasitism by the parasitic dinoflagellate Amoebophrya could have significant impacts on host behavior such as diel vertical migration. Parasitic dinoflagellates may not only stimulate rapid cycling of dissolved organic materials and/or trace metals but also would repackage the relatively large sized host biomass into a number of smaller dinospores, thereby leading to better retention of host's material and energy within the microbial loop. To better understand the roles of parasites in plankton ecology and harmful algal dynamics, further research on a variety of dinoflagellate host-parasite systems is needed.

Host-Parasite System in a Red Tide Dinoflagellate Prorocentrum minimum: (1) Life Cycle Stages of the Parasitic Dinoflagellate Amoebophrya sp. (적조생물 Prorocentrum minimum의 숙주-기생자 배양체: (1) 기생성 와편모류 Amoebophrya sp.의 생활사 단계)

  • 김영길;박명길;이원호
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.4
    • /
    • pp.2221-2221
    • /
    • 2002
  • The first laboratory culture of host-parasite system of Prorocentrum minimum- Amoebophrya sp. was established by single cell isolation method. Here, we report the life cycle stages of the parasitic dinoflagellate. Amoebophrya sp. of the red tide dinoflagellate P. minimum as observed by light and epifluorescence microscopy. Infections developed inside the nucleus of P. minimum. The trophont developed to occupy almost all the intracellular space of the host at its late stage. The fully developed trophont finally ruptured through the host cell. “Vermiform stage”, the free-swimming extracellular lift cycle stage is followed by another stage for the sudden release of many individual dinospores. Our laboratory strain of the host-parasite system for P. minimum, a causative species fur the huge red tides in spring and summer in Korean coastal waters, could be a useful living material for the in situ biological control of harmful algal blooms.

Host-Parasite System in a Red Tide Dinoflagellate Prorocentrum minimum:(1) Life Cycle Stages of the Parasitic Dinoflagellate Amoebophrya sp. (적조생물 Prorocentrum minimum의 숙주-기생자 배양체: (1) 기생성 와편모류 Amoebophrya sp.의 생활사 단계)

  • 김영길;박명길;이원호
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.4
    • /
    • pp.221-225
    • /
    • 2002
  • The first laboratory culture of host-parasite system of Prorocentrum minimum- Amoebophrya sp. was established by single cell isolation method. Here, we report the life cycle stages of the parasitic dinoflagellate. Amoebophrya sp. of the red tide dinoflagellate P. minimum as observed by light and epifluorescence microscopy. Infections developed inside the nucleus of P. minimum. The trophont developed to occupy almost all the intracellular space of the host at its late stage. The fully developed trophont finally ruptured through the host cell. “Vermiform stage”, the free-swimming extracellular lift cycle stage is followed by another stage for the sudden release of many individual dinospores. Our laboratory strain of the host-parasite system for P. minimum, a causative species fur the huge red tides in spring and summer in Korean coastal waters, could be a useful living material for the in situ biological control of harmful algal blooms.

Amyloodinium sp. Infestation in Mullet (Mugil cephalus) cultured in a pond on land (육상 수조에서 사육 중인 숭어 (Mugil cephalus)의 Amyloodinium sp. 감염)

  • Park, Sung-Woo;Yu, Jin-Ha;Lee, Chun-Hee
    • Journal of fish pathology
    • /
    • v.19 no.1
    • /
    • pp.7-15
    • /
    • 2006
  • Amyloodinium sp. was found on the gills of mullet (Mugil cephalus) cultured on land. No external symptoms in the diseased fish were found except decoloration of the gills. In fresh preparations of the gills the parasites were opaque round or oval shape with a bright nucleus and 43.5 ㎛ (18.2~72.7, n=20) in size. In preparations added a drop of Lugol solution, they were black with the same shapes in fresh preparations and 43.5 ㎛ (n=20) in size. The parasites were stained black and blue in a droplet of Lugol solution and Diff-Quick III solution, respectively and their sizes were a little larger than in wet preparations. After stained with May-Grunwald Giemsa, the parasites appeared granular eosinophlic in the peripheral cytoplasm and granular strong basophilic in the center. In silver impregnated specimens the peripheral granules were negative and the central ones positive. The granules appeared brown in purplish cytoplasm after staining with Lugol solution. The parasites developed by binary division when they were cultivated in filtered seawater at 20℃. Histopathologically severe epithelial hyperplasia and fusion in the gill filaments resulted in clubbing, especially the proximal region of the filament. Epithelial hyperplasia was also found in the basal regions of the gill filaments and some epithelial cells were occasionally detached from the filaments. Some pear-shaped trophonts of the parasites with rhizoid attached on the gill filaments showing hyperplasia of the epithelial cells and mucous cells.

Endoparasitic Dinoflagellates, Amoebophrya spp. and their Host Dinoflagellates in Jinhae Bay, Korea (진해만에 출현하는 기생성 와편모류 Amoebophrya spp.와 숙주 와편모류)

  • Park, Jong-Gyu;Hur, Hyun-Jung;Coats, D. Wayne;Yih, Won-Ho;Ha, Na
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.359-369
    • /
    • 2007
  • Amoebophrya is an obligate endoparasitic eukaryotic dinoflagellate infecting host species and eventually killing them within a short period. Because of its host specificity and significant impacts on population dynamics of host species, it has long been proposed to be a potential biological agent for controlling harmful algal bloom (HAB). For several decades, the difficulties of culturing host - parasite systems have been a great obstacle to further research on the biology of Amoebophrya but recent success of several culture systems reactivates this research field. In this study, as a preliminary work for understanding the impacts of Amoebophrya on the population dynamics of host species, semimonthly occurrence of infected host dinoflagellates by Amoebophrya spp. had been observed in Jinhae Bay for two years and with a host - parasite system cultivated, host specificity of Amoebophrya spp. on several dinoflagellates was tested. Amoebophrya spp. were observed in the cellular organelle and cytoplasm of several species including Akashiwo sanguinea, Ceratium fusus, Dinophysis acuminata, Heterocapsa triquetra, Oblea sp., Prorocentrum minimum, P. triestinum, Scrippsiella spinifera, and S. trochoidea. Among them two host - parasite systems for an athecate dinoflagellate, A. sanguinea, and for a thecate dinoflagellate, H. triquetra, had been able to be successfully established as laboratary cultures. Cross-infection tests for 6 species of dinoflagellates in which Amoebophrya was observed or had been reported to exist confirmed high preference for host species of the parasite. Through the continuous research on Amoebophrya occurring in Korean coastal waters, we need to maintain various host - parasite culture systems, which will be very helpful for understanding its ecological role in marine food webs and for applying the species to biologically control harmful algal blooms.