• Title/Summary/Keyword: dimethylmalate

Search Result 1, Processing Time 0.014 seconds

Regulation of Choline Transport by Oxidative Stress at the Blood-Brain Barrier In Vitro Model

  • Kang, Young-Sook;Lee, Hyun-Ae;Lee, Na-Young
    • Biomolecules & Therapeutics
    • /
    • v.16 no.1
    • /
    • pp.14-20
    • /
    • 2008
  • In the present study, we examined how the transport of choline is regulated at the blood-brain barrier (BBB) under the central nervous system (CNS) cellular damages by oxidative stress using a conditionally immortalized rat brain capillary endothelial cells (TR-BBB), in vitro the BBB model. It was also tested whether the choline uptake is influenced by membrane potential, extracellular pH, protonophore (FCCP) and amiloride in TR-BBB cells. In result, $[^3H]choline$ uptake was inhibited by FCCP and dependent on extracellular pH. The treatment of TR-BBB cells with 20 ng/mL tumor necrosis $factor-{\alpha}$ $(TNF-{\alpha})$, 10 ng/mL lipopolysaccharide (LPS), 100 ${\mu}M$ diethyl maleate (DEM) and 100 ${\mu}M$ glutamate resulted in 3.0-fold, 2.6-fold, 1.8-fold and 2.0-fold increases of $[^3H]choline$ uptake at the respective peak time, respectively. In contrast, hydrogen peroxide and raffinose did not show any significant effects on choline uptake. In addition, choline efflux was significantly inhibited by $TNF-{\alpha}$, LPS and DEM producing cell damage states. In conclusion, the influx and efflux transport system for choline existed in TR-BBB cell line and this process was affected by several oxidative stress inducing agents.