• Title/Summary/Keyword: dimensions of stiffened plate

Search Result 14, Processing Time 0.017 seconds

Genetic optimization of vibrating stiffened plates

  • Marcelin, Jean Luc
    • Structural Engineering and Mechanics
    • /
    • v.24 no.5
    • /
    • pp.529-541
    • /
    • 2006
  • This work gives an application of stochastic techniques for the optimization of stiffened plates in vibration. The search strategy consists of substituting, for finite element calculations in the optimization process, an approximate response from a Rayleigh-Ritz method. More precisely, the paper describes the use of a Rayleigh-Ritz method in creating function approximations for use in computationally intensive design optimization based on genetic algorithms. Two applications are presented; their deal with the optimization of stiffeners on plates by varying their positions, in order to maximize some natural frequencies, while having well defined dimensions. In other words, this work gives the fundamental idea of using a Ritz approximation to the response of a plate in vibration instead of finite element analysis.

Eigenvalue Analysis of Stiffened Plates on Pasternak Foundations (Pasternak지반위에 놓인 보강판의 고유치해석)

  • Lee, Byoung-Koo;Kim, Il-Jung;Oh, Soog-Kyoung;Lee, Yong-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.151-158
    • /
    • 2005
  • This research analyzes eigenvalue analysis of stiffened plates on the Pasternak foundations using the finite clement method. For analyzing the stiffened plates, both the Mindlin plate theory and Timoshenko beam-column theory were applied. In application of the finite element method, 8-nodes serendipity clement system and 3-nodes finite element system were used for plate and beam elements, respectively. Elastic foundations were modeled as the Pasternak foundations in which the continuity effect of foundations is considered. In order to verify the theory of this study, solutions obtained by this analysis were compared with the classical solutions in reference, experimental solutions and solutions obtained by SAP 2000. The natural frequency of stiffened plates on Pasternak foundations were determined according to changes or foundation parameters and dimensions of stiffener.

A Study of Impact Reduction Characteristics of Hat-Shaped Stiffened Panel Under Hypervelocity Impact (초고속 충돌을 받는 모자형 보강 패널의 충격 저감 특성에 관한 연구)

  • Yang, Tae-Ho;Lee, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.929-935
    • /
    • 2013
  • This paper presents the results of sizing optimization of ahat-shaped stiffener on a rectangular stiffened panel. The stiffened panel is subjected to impact loading by a projectile with a velocity of 1500-2500 m/s. To determine the size of the hat-shaped stiffener, sizing optimization was performed. The sizing optimization consists of three functions: objective, constraint, and design functions. The objective function is used to maximize the fundamental frequency of the stiffened panel. The constraint function is that the stiffener volume is less than 10% of the plate volume. The design function is the dimensions of the hat-shaped stiffener. By using the stiffened panel with the optimized hat-shaped stiffener, a hypervelocity impact was simulated, and the velocity and kinetic energy on the optimized stiffener was obtained. To evaluate the impact reduction on the stiffened panel, the velocity and kinetic energy of the projectile was normalized and compared.

Study on steel plate shear walls with diagonal stiffeners by cross brace-strip model

  • Yang, Yuqing;Mu, Zaigen;Zhu, Boli
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.113-127
    • /
    • 2022
  • Steel plate shear walls (SPSWs) are commonly utilized to provide lateral stiffness in high-rise structures. The simplified model is frequently used instead of the fine-scale model in the design of buildings with SPSWs. To predict the lateral strength of steel plate shear walls with diagonal stiffeners (DS-SPSWs), a simplified model is presented, namely the cross brace-strip model (CBSM). The bearing capacity and internal forces of columns for DS-SPSWs are calculated. In addition, a modification coefficient is introduced to account for the shear action of the thin plate. The feasibility of the CBSM is validated by comparing the numerical results with theoretical and experimental results. The numerical results from the CBSM and fine-scale model, which represent the bearing capacity of the DS-SPSW with varied stiffened plate dimensions, are in good accord with the theoretical values. The difference in bearing capacity between the CBSM and the fine-scale model is less than 1.35%. The errors of the bearing capacity from the CBSM are less than 5.67% when compared to the test results of the DS-SPSW. Furthermore, the shear and axial forces of CBSM agree with the results of the fine-scale model and theoretical analysis. As a result, the CBSM, which reflects the contribution of diagonal stiffeners to the lateral resistance of the SPSW as well as the effects on the shear and axial forces of the columns, can significantly improve the design accuracy and efficiency of buildings with DS-SPSWs.