• Title/Summary/Keyword: diketopiperazine

Search Result 21, Processing Time 0.023 seconds

Minority report; Diketopiperazines and Pyocyanin as Quorum Sensing Signals in Pseudomonas aeruginosa (Minority report; Pseudomonas aeruginosa의 정족수 인식(쿼럼 센싱) 신호물질로써의 Diketopiperazines과 Pyocyanin)

  • Lee, Joon-Hee
    • Korean Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.85-92
    • /
    • 2008
  • Pseudomonas aeruginosa is an opportunistic human pathogen, causing a wide variety of infections including cystic fibrosis, microbial keratitis, and burn wound infections. The cell-to-cell signaling mechanism known as quorum sensing (QS) plays a key role in these infections and the QS systems of P. aeruginosa have been most intensively studied. While many literatures that introduce the QS systems of P. aeruginosa have mostly focused on two major acyl-homo serine lactone (acyl-HSL) QS signals, N-3-oxododecanoyl homoserine lactone (3OC12) and N-butanoyl homoserine lactone (C4), several new signal molecules have been discovered and suggested for their significant roles in signaling and virulence of P. aeruginosa. One of them is PQS (Pseudomonas quinolone signal; 2-heptyl-3-hydroxy-4-quinolone), which is now considered as a well-characterized major signal meolecule of P. aeruginosa. In addition, recent researches have also suggested some more putative signal molecules of P. aeruginosa, which are diketopiperazines (DKPs) and pyocyanin. DKPs are cyclic dipeptides and structurally diverse depending on what amino acids are involved in composition. Some DKPs from the culture supernatant of P. aeruginosa are suggested as new diffusible signal molecules, based on their ability to activate Vibrio fischeri LuxR biosensors that are previously considered specific for acyl-HSLs. Pyocyanin (1-hydroxy-5-methyl-phenazine), one of phenazine derivatives produced by P. aeruginosa is a characteristic blue-green pigment and redox-active compound. This has been recently suggested as a terminal signaling factor to upregulate some QS-controlled genes during stationary phase under the mediation of a transcription factor, SoxR. Here, details about these newly emerging signaling molecules of P. aeruginosa are discussed.

Isolation, Purification, and Characterization of Five Active Diketopiperazine Derivatives from Endophytic Streptomyces SUK 25 with Antimicrobial and Cytotoxic Activities

  • Alshaibani, Muhanna M.;MohamadZin, Noraziah;Jalil, Juriyati;Sidik, Nik Marzuki;Ahmad, Siti Junaidah;Kamal, Nurkhalida;Edrada-Ebel, RuAngelie
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1249-1256
    • /
    • 2017
  • In our search for new sources of bioactive secondary metabolites from Streptomyces sp., the ethyl acetate extracts from endophytic Streptomyces SUK 25 afforded five active diketopiperazine (DKP) compounds. The aim of this study was to characterize the bioactive compounds isolated from endophytic Streptomyces SUK 25 and evaluate their bioactivity against multiple drug resistance (MDR) bacteria such as Enterococcus raffinosus, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter spp., and their cytotoxic activities against the human hepatoma (HepaRG) cell line. The production of secondary metabolites by this strain was optimized through Thornton's medium. Isolation, purification, and identification of the bioactive compounds were carried out using high-performance liquid chromatography, high-resolution mass liquid chromatography-mass spectrometry, Fourier transform infrared spectroscopy, and nuclear magnetic resonance, and cryopreserved HepaRG cells were selected to test the cytotoxicity. The results showed that endophytic Streptomyces SUK 25 produces four active DKP compounds and an acetamide derivative, which were elucidated as $cyclo-({\text\tiny{L}}-Val-{\text\tiny{L}}-Pro)$, $cyclo-({\text\tiny{L}}-Leu-{\text\tiny{L}}-Pro)$, $cyclo-({\text\tiny{L}}-Phe-{\text\tiny{L}}-Pro)$, $cyclo-({\text\tiny{L}}-Val-{\text\tiny{L}}-Phe)$, and N-(7-hydroxy-6-methyl-octyl)-acetamide. These active compounds exhibited activity against methicillin-resistant S. aureus ATCC 43300 and Enterococcus raffinosus, with low toxicity against human hepatoma HepaRG cells. Endophytic Streptomyces SUK 25 has the ability to produce DKP derivatives biologically active against some MDR bacteria with relatively low toxicity against HepaRG cells line.

Characterization of an Elastase Inhibitor Produced by Streptomyces lavendulae SMF11

  • Lee, Hyun-Sook;Jin, Wook;Kang, Sung-Gyun;Hwang, Yoon-Sook;Kho, Yung-Hee;Lee, Kye-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.81-85
    • /
    • 2000
  • An elastase inhibitor, SMFEI02, was isolated from culture broth of Streptomyces lavendulae SMF11. The inhibitor was purified by ultrafiltration followed by XAD-7 column and Dowex-1 anion-exchange chromatographies, and preparative HPLC. The molecular formula was determined to be $C_{14}H_{16}N_2O_2$ (MW244) by HRFAB-MS analysis. The inhibitor was identified to be a diketopiperazine cyclo(S-Phe-S-Pro) by the optical rotation value and MNR spectral data, and showed inhibitory activities for trypsin, chymotrypsin, cathepsin B, and papain as well as elastase with the Ki values ranging from 1.78mM to $2.86{\;}\mu\textrm{m}$. The inhibition showed a competitive mode for elastase, chymotrypsin, and cathepsin B, whereas it showed a noncompetitive mode for trypsin and papain.

  • PDF

ISOLATION OF A NEW $\alpha$-GLUCOSIDASE INHIBITOR FROM A FUNGUS, PENICILLIUM SP. F70614

  • Kwon, Oh-Sung;Park, Sang-Ho;Lee, Sang-Hwa;Park, Dong-Jin;Yun, Bong-Sik;Kim, Chang-Jin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.134-134
    • /
    • 1998
  • The modulation of glycosidase activity by inhibitors is of great interest. Such compounds have been shown to be important tools in mechanistic studies on glycohydrolase as well as having promising therapeutic application. An ${\alpha}$-glucosidase inhibitor was isolated from culture filterates of Penicillium sp. The inhibitor was active against ${\alpha}$-glucosidase isolated from yeast and porcine small intestine. However, it showed no inhibition to Aspergillus ${\alpha}$-galactosidase, Escherichia coli ${\beta}$-galactosidase, and jack bean ${\alpha}$-mannosidase. The inhibitor was highly soluble in ether, methanol and chloroform. The inhibitor was purified using silica gel, Sephadex LH-20 column chromatography and reverse-phase HPLC. The inhibitory compound designated PA-7(IC$\sub$50/=35$\mu\textrm{g}$) was obtained as white powder. The structure of PA-7 was determined with spectroscopic data of EI-MS, FAB-MS, $^1$H, and $\^$13/C NMR. The inhibitor has a diketopiperazine moiety.

  • PDF

Crystal Structure and Spectroscopic Properties of Cyclic Dipeptide: A Racemic Mixture of cyclo(ᴅ-Prolyl-ʟ-Tyrosyl) and cyclo(ʟ-Prolyl-ᴅ-Tyrosyl)

  • Hong, Yong Pyo;Lee, Sung-Hong;Choi, Jong-Ha;Kashima, Ayana;Nakamura, Go;Suzuki, Takayoshi
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2299-2303
    • /
    • 2014
  • Two diastereoisomers of cyclo(Pro-Tyr) have been synthesized simultaneously. The crystal structures and conformations of both cyclo($\small{L}$-Pro-$\small{L}$-Tyr) and a racemic mixture of cyclo($\small{D}$-Pro-$\small{L}$-Tyr) and cyclo($\small{L}$-Pro-$\small{D}$-Tyr), abbreviated as rac-cyclo($\small{D}$-Pro-$\small{L}$-Tyr/$\small{L}$-Pro-$\small{D}$-Tyr), have been determined by a single-crystal X-ray diffraction study at low temperature. The crystals of rac-cyclo($\small{D}$-Pro-$\small{L}$-Tyr/$\small{L}$-Pro-$\small{D}$-Tyr) belong to orthorhombic space group $Pna2_1$ with a = 10.755 (1), b = 12.699 (1), c = 9.600 (1) ${\AA}$ and Z = 4. The tyrosine side chain is folded towards the diketopiperazine (DKP) ring. The DKP ring adopts a twist boat conformation with pseudo symmetry $C_{2v}$. The pyrrolidine ring has an envelope conformation with the N5, C4, C7 and C8 atoms in a plane. The crystal of rac-cyclo($\small{D}$-Pro-$\small{L}$-Tyr/$\small{L}$-Pro-$\small{D}$-Tyr) is stabilized by hydrogen bonds between amide N2-H2 and carbonyl oxygen O2 in the neighbor. The hydroxyl group of tyrosine residue is also hydrogen bonded to the oxygen of the carbonyl group of the DKP ring in the next molecule. The spectroscopic properties of both isomers are also described.

Transcriptomic Analysis of Genes Modulated by Cyclo($\small{L}$-Phenylalanine-$\small{L}$-Proline) in Vibrio vulnificus

  • Kim, In Hwang;Son, Jee-Soo;Wen, Yancheng;Jeong, Sang-Min;Min, Ga-Young;Park, Na-Young;Lee, Keun-Woo;Cho, Yong-Joon;Chun, Jongsik;Kim, Kun-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1791-1801
    • /
    • 2013
  • Diketopiperazine is produced by various organisms, including bacteria, fungi, and animals, and has been suggested as a novel signal molecule involved in the modulation of genes with various biological functions. Vibrio vulnificus, which causes septicemia in humans, produces cyclo($\small{L}$-phenylalanine-$\small{L}$-proline) (cFP). To understand the biological roles of cFP, the effect of the compound on the expression of the total mRNA in V. vulnificus was assessed by next-generation sequencing. Based on the transcriptomic analysis, we classified the cFP-regulated genes into functional categories and clustered them according to the expression patterns resulted from treatment with cFP. From a total of 4,673 genes, excepting the genes encoding tRNA in V. vulnificus, 356 genes were up-regulated and 602 genes were down-regulated with an RPKM (reads per kilobase per million) value above 3. The genes most highly induced by cFP comprised those associated with the transport and metabolism of inorganic molecules, particularly iron. The genes negatively regulated by cFP included those associated with energy production and conversion, as well as carbohydrate metabolism. Noticeably, numerous genes related with biofilm formation were modulated by cFP. We demonstrated that cFP interferes significantly with the biofilm formation of V. vulnificus.

Antioxidant Activity of a Chitin-degrading Bacterium Bacillus idriensis (CGH18) (키틴분해 박테리아 Bacillus idriensis (CGH18)의 항산화 활성)

  • Jung, Myoung Eun;Hong, Joo Wan;Lee, Jeong-Im;Kwak, Myoung Kuk;Kim, Hojun;Sohn, Jae Hak;Song, Young-Sun;Oh, Kwang-Suk;Seo, Youngwan
    • KSBB Journal
    • /
    • v.28 no.4
    • /
    • pp.217-224
    • /
    • 2013
  • A bacterium CGH18 exhibiting antioxidizing and chitin-degrading activities in the colloidal chitin culture medium was isolated from salt-fermented crab. This strain was identified as Bacillus idriensis based on 16S rDNA sequence homology search. Its crude extract was partitioned between n-BuOH and $H_2O$. The organic layer was further partitioned between $CH_2$ $Cl_2$ and $H_2O$. Antioxidant activities of crude extract and its solvent fractions were evaluated using five different bioassay methods, including the degree of occurrence of intracellular reactive oxygen species (ROS), peroxynitrite scavenging (ONOO), and oxidative damage of genomic DNA. All fractions exhibited significant antioxidant activity in bioassay systems used.

Chemical constituents from the culture filtrate of a Himalayan soil fungus, Preussia sp. and their anti-inflammatory activity (히말라야의 토양 곰팡이, Preussia sp. 배양액으로부터 추출된 화학 성분들 및 항 염증 활성)

  • Youn, Ui Joung;Seo, Seung Suk;Yim, Jung Han;Kim, Il Chan;Han, Se Jong
    • Korean Journal of Microbiology
    • /
    • v.54 no.1
    • /
    • pp.18-23
    • /
    • 2018
  • A new naturally occurring benzoic acid derivative, benzyl 2,4-di(benzyloxy)benzoate (1) and six known compounds (2-7) were isolated from the fungus, Preussia sp. found in frozen soil of the Himalaya Mountain. The structures of the new compound, together with the known compounds were determined by 1D-and 2D-NMR experiments, as well as comparison with published values. In addition, to the best of our knowledge, the known compounds 2-7 were isolated for the first time from the genus Preussia and the family Sporormiaceae. The isolates were evaluated for cancer chemopreventive potential based on their ability to inhibit nitric oxide (NO) production induced by lipopolysaccharide (LPS) in mouse macrophage RAW 264.7 cells in vitro. Compounds 1 and 2 inhibited NO production by 50.7% and 88.5% at a concentration of 100 mg/ml, respectively.

Structures and Antioxidant Activity of Diketopiperazines Isolated from the Mushroom Sarcodon aspratus (능이버섯(Sarcodon aspratus)으로부터 분리한 diketopiperazine계 화합물의 화학구조 및 항산화활성)

  • Kim, Jin-Woo;Moon, Byung-Sik;Park, Young-Min;Yoo, Nam-Hee;Ryoo, In-Ja;Chinh, Nguyen Thi;Yoo, Ick-Dong;Kim, Jong-Pyung
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.93-97
    • /
    • 2005
  • Three antioxidants, Sa-1, Sa-2 and Sa-3, were isolated from the MeOH extract of the mushroom Sarcodon aspratus through EtOAc extraction, silica gel and Sephadex LH-20 column chromatography, and $C_{18}$ HPLC. The structures of the compounds were determined mainly by NMR and mass spectroscopic data analyses. Sa-1, Sa-2 and Sa-3 were identified as diketopiperazines, and their structures were determined to be cyclo(prolyl-valyl), cyclo(prolyl-leucyl) and cyclo(prolyl-isoleucyl), respectively. This is the first time that these compounds were isolated from this mushroom. They showed antioxidant activity by scavenging DPPH radical $(EC_{50}\;0.15{\sim}0.18\;mM)$ and superoxide radical $(EC_{50}\;0.21{\sim}0.24\;mM)$.