• Title/Summary/Keyword: dihydroxyphenylacetic acid

Search Result 27, Processing Time 0.02 seconds

Anti-oxidant and Anti-inflammatory Effects of Rutin and Its Metabolites

  • Kim, Ji Hye;Park, Sang Hee;Beak, Eun Ji;Han, Chang Hee;Kang, Nam Joo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.3
    • /
    • pp.165-169
    • /
    • 2013
  • Rutin is one of the major flavonoids found in buckwheat (Fagopyrum esculentum Moench). While rutin is already known to exhibit anti-oxidative, anti-inflammatory, and anti-carcinogenic activities. However, the health beneficial function of rutin metabolites is not well understood. In DPPH radical scavenging assays, the present study found that 3,4-dihydroxyphenyl acetic acid had the highest total anti-oxidant activity, followed by 3,4-dihydroxyphenylacetic acid, rutin, homovanillic acid, and 3-hydroxyphenyl acetic acid. Further, 3,4-dihydroxyphenylacetic acid strongly reduced LPS-induced IL-6 production in RAW 264.7 cells, compared with other metabolites. Therefore, these results suggest that rutin metabolites have potential to be utilized as food ingredients with anti-oxidant and anti-inflammatory activities.

  • PDF

Effect of Ginseng Saponins on the Amount of Catecholamine Neurotransmitters in Carbon Monoxide-intoxicated Rats and Aged Rats (인삼 사포닌이 일산화탄소중독 및 노화과정에서 흰쥐의 신경전달물질 함량 변화에 미치는 영향)

  • Park, Hea-Young;Kim, Choon-Mi;Ju, Ji-Yeon;Choi, Hyun-Jin
    • YAKHAK HOEJI
    • /
    • v.36 no.3
    • /
    • pp.285-290
    • /
    • 1992
  • After rats were exposed to 5,000 ppm carbon monoxide for 30 minutes, the amounts of catecholamine neurotransmitters in stratum were measured using high performance liquid chromatograph equipped with electrochemical detector. The concentration of dopamine in stratum was significantly decreased after carbon monoxide intoxification, but those of dihydroxyphenylacetic acid, norepinephrine, and epinephrine was not changed. However the pretreatments of Ginseng total saponin and panaxatriol saponin increased the concentrations of dopamine and its acidic metabolites (DOPAC and HVA). Ginseng total saponin also increased the concentrations of norepinephrine and epinephrine. Similar results were obtained from aged rats.

  • PDF

The Application of NMR Techniques to the Structural Confirmation of O-Substituted 3,4-Dihydroxyphenylacetic Acid Derivatives

  • Lee, Sueg-Geun;Choi, Joong-Kwon;Park, No-Sang;Hong, Mi-Sook;Ha, Deok-Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.87-91
    • /
    • 1992
  • The structures of the compounds, 1, 2, 3, and 4, which were precursors of analgesics, were confirmed by modern NMR techniques. The complete $^{13}C-NMR$ assignments of these systems were established by applying COLOC (COrrelated spectroscopy for LOng range Couplings), HETCOR (HETeronuclear CORrelated spectroscopy), RCT (Relay Coherence Transfer), and NOE difference spectroscopy. The limitation of COLOC approach which has been widely used recently is discussed.

Determination of Catecholamines and Their Metabolites in Rat Brain by High Performance Liquid Chromatography with Electrochemical Detector (HPLC-ECD에 의한 흰쥐 뇌 부위별 Catecholamine 및 대사산물의 신속정량법)

  • Ro, Ihl-Hyeob
    • YAKHAK HOEJI
    • /
    • v.32 no.1
    • /
    • pp.50-54
    • /
    • 1988
  • A simple and sensitive method was studied for the simultaneous determination of catecholamine, indoleamine and their related metabolites by high performance liquid chromatography with electrochemical detector. Norepinephrine, dopamine, serotonin and their metabolites of 3,4-dihydroxyphenylacetic acid, homovanillic acid, 5-indoleacetic acid were resolved from rat brain tissue homogenates by separation on reversed phase $C_{18}$ column with mobile phase consisting of monochloroacetate buffer (pH2.47), 1.42mM sodium octyl sulfonate and 7% acetonitrile. Both catechols and indoles can be eluted in 15min. The sensitivities of this method are sufficient for determination of at least 100 pg of neurochemical amines in brain samples, for example, frontal cortex, olfactory bulb, striatum, septum, hippocampus, thalamus, hypothalamus, medulla & pons and cerebellum. The highest level of dopamine was observed in striatum whereas norepinephrine and serotonin were in hypothalamus.

  • PDF

In Vivo Measurement of Extracellular Monoamines and Their Metabolites in the Rat Posterior Hypothalamus Using Microdialysis Technique (미세투석법을 이용하여 흰쥐 후 사상하부에서 세포외액의 모노아민과 대사체들의 생체내 측정)

  • Sung, Ki-Wug;Kim, Seong-Yun;Cho, Young-Jin;Lee, Kweon-Haeng;Lee, Sang-Bok
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 1992
  • Catecholamines, serotonin and their metabolites were measured in the posterior hypothalamus of urethane-anesthetized normotensive Wistar Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) using brain microdialysis which is a recently developed experimental method to measure the release of neurotransmitters and their metabolites at the localized brain area in vivo. Microdialysis probe was implanted stereotaxically to the rat posterior hypothalamus and perfused by Ringer's solution. Monoamines and their metabolites were quantified by reverse phase high performance liquid chromatography with electrochemical detection. In vitro recovery test of microdialysis showed that there exist inverse relationship between the perfusion flow rate and the relative recovery of neurochemical compounds. The estimated extracellular concentration of dopamine was about 32 nM, of norepinephrine 50 nM, of epinephrine 50 nM, of serotonin 73 nM, of 3, 4-dihydroxyphenylacetic acid (DOPAC) 281 nM, of homovanillic acid (HVA) 181 nM, and of 5-hydroxyindoleacetic acid (5HIAA) 3767 nM in the hypothalamic perfusate of the normotensive rat. There was no difference in the basal level of monoamines between the SHR and the WKY. In contrast, the level of DOPAC, HVA and 5HIAA in SHR was higher than that in the WKY, This study demonstrated that the microdialysis technique should be an applicable tool for in vivo measurement of central neurochemical substances.

  • PDF

Changes in the Distribution of Dopamine and it's Metabolites in Streptozotocin-induced Diabetic Rat Striatum

  • Lim, Dong-Koo;Lee, Kyung-Min
    • Archives of Pharmacal Research
    • /
    • v.18 no.4
    • /
    • pp.271-276
    • /
    • 1995
  • Changes in the distribution of dopamine and its metabolites, activities of monoamine oxidase, and dopamine uptake were studied inhyperglycemic rat striatum. The hyperglycemia was induced by the administration of streptozotocin (STZ, 40 mg/kg, i.p. for 3 days.). The levels of dihydroxyphenylacetic acid (DOPAC) and homovanillic acid were significantly decreased without change in dopamine level in the synatic cleft 14 days after STZ treatment. In the synaptosome, the dopamine level, however, was significanly increased after the treatment. But the DOPAC level in the synaptosome was decreased 14 days after the treatment. The affinity of dopamine uptake was significantly decreased without changes in the velocity 14 days after the treatment. However the response to uptqke inhibitor was unchanged. The striatal monoamine oxidase activities were also decreased in the hyperglycemic state. These results indicate that various parameters of striatal dopamine activities were decreased in the hyperglycemic rats. Furthermore, it suggests that the increase in dopamine level of synaptosome might be due to the decrease in the release of dopaine in hyperglycemic state.

  • PDF

An in Vivo Study of Dopamine Metabolism in Hyperglycemic Rat Striatum

  • Lim, Dong-Koo;Lee, Kyung-Min
    • Archives of Pharmacal Research
    • /
    • v.18 no.4
    • /
    • pp.249-255
    • /
    • 1995
  • The changes in the levels of the extracellular dopamine metabolites and the responses to various dopamine agents were studied by using microdialysis inhyperglycemic rat striatum. The hyperglycemia were induced by the administriation of streptozotocin (40 mg/kg, i.p. for 3 days.). The basal levels of striatal dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were significantly decreased in hyperglycemic rat striatum. After the administration ofl D-1 and D-2 receptor antagonists, SCH-23390 and (-)sulpiride, to rats 14 days after the last administration of STZ, the increased rates in DOPAC levels were higher in hyper- than in normoglycemic rats. However, after the administration of dopamine autoeceptor agonist, 3(-)PPP, the levels of the extracellular HVA were increased in normoglycemic rats, but those were not altered in hyperglycemic rats. The results indicate that the striatal dopamine activities were decreased in the hyperglycemic rats and suggest that release of dopamine may be decreased in hyperglycemic rats. Furthermore it suggest that the increase in the levels of the extracellular dopamine metabolites by dopamine antagonists might be dur to the incrrased sensitivities of the dopamine receptors in hyperglycemic state.

  • PDF

Changes in the Central Dopaminergic Systems in the Streptozotocin-induced Diabetic Rats

  • Lim, D.K.;Lee, K.M.;Ho, I.K.
    • Archives of Pharmacal Research
    • /
    • v.17 no.6
    • /
    • pp.398-404
    • /
    • 1994
  • The behavioral response, depamine metabolism, and characteristics of dopamine subtypes after developing the hyperlycemia were studied in the striata of rats. In animals developed hyperglycemia, the on-set duration of cataleptic behavior responded to SCH 23390 injection was delayed abd shortened, respectively. However, the cataleptic response to spiperone occurred significantly earlier in on-set and prolonged in duration. Dopamine metabolites, dihydroxyphenylacetic acid (DDPAC) and homovanillic acid (HVA), were significantly reduced in teh striata of hyeprglycemic rats. However, level of DA was significantly increased. It is noted that the ratios of DOPAC and HVA to DA were decreased, suggesting decreased tumover of DA. The affinity of striatal D-1 receptors was significantly increased without changes in the number of binding sites, while the maximum binding number of D-2 recptors was significantly increased without affecting its affinity in the diabetic rats. These results indicate that the dopaminergic activity in striatia was altered in hyperglycemic rats. Furthermore, it suggests that the upregulation of dopamine receptors might be due to the decreased dopamine matabolism.

  • PDF

The Effect of Methamphetamine on the Regional Levels of Dopamine and Serotonin in the Rat Brain (Methamphetamine 투여가 흰쥐 뇌 부위별 dopamine, serotonin량에 미치는 영향)

  • Ro, Ihl-Hyeob;Chung, Hee-Sun
    • YAKHAK HOEJI
    • /
    • v.34 no.5
    • /
    • pp.311-322
    • /
    • 1990
  • This study primarily attempted to investigate the effects of methamphetamine on stereotyped behavior. Furthermore, an extensive experiment was conducted to examine the cortex methamphetamine concentration and levels of dopamine, serotonin, and their metabolites in striatum, septum and hypothalamus. Following treatment with 10 mg/kg methamphetamine, stereotyped behavior was observed in 10 minutes. Consequently female rats displayed more intense and longer lasting activity than the male. The concentration of cortex methamphetamine was even higher in female than male. The administration of methamphetamine increased the rate of dopamine turnover-i.e. lower dopamine, higher homovanillic acid in the striatum, septum. The highest rate was found in the striatum. Methamphetamine decreased the levels of serotonin, and its metabolite of 5-indoleacetic acid in the striatum, septum. An intensity in behavioral response was accompanied by an increase in dopamine turnover, a decrease in serotonergic transmission. The reduction of 3,4-dihydroxyphenylacetic acid-i.e. the metabolite of dopamine was due not to the inhibition of monoamine oxidase but to the induction of monoamine oxidase but to the induction of catechol-O-methyltransferase. The phenomenon of biogenic amines by methamphetamine concurred upon the concentration of methamphetamine in the brain. This process preceded stereotyped behavior. After single injection of 10 mg/kg methamphetamine, the levels of biogenic amines recovered within 6 hours.

  • PDF