• 제목/요약/키워드: digitally modulated signal classification

검색결과 5건 처리시간 0.017초

대역폭 추정을 적용한 효율적인 디지털 변조 신호 분류 (An Efficient Classification of Digitally Modulated Signals Using Bandwidth Estimation)

  • 최종원;안우현;서보석
    • 방송공학회논문지
    • /
    • 제22권2호
    • /
    • pp.257-260
    • /
    • 2017
  • 이 논문에서는 대역폭 추정치를 이용하여 효율적으로 디지털 변조 신호를 자동으로 분류하는 변조인식 방법을 제안한다. 변조 신호를 분류하기 위해서 일반적으로 특징변수를 이용한 방법이 널리 사용되는데, 특징변수의 정확도는 특징변수 추정에 사용되는 디지털 변조 신호의 심볼수와 심볼당 표본수에 따라 크게 영향을 받는다. 이 논문에서는 높은 과표본화율로 표본화된 신호에 대해 먼저 대략적으로 대역폭을 추정하고 이로부터 심볼당 적절한 표본수를 취할 수 있도록 표본율을 감소시킨다. 따라서 처리하는 표본수가 동일한 경우 더 많은 심볼을 사용하게 되어 변조 인식률을 높일 수 있다.

순환정상 프로세스의 고차 통계 특성을 이용한 디지털 변조인식 (Digitally Modulated Signal Classification based on Higher Order Statistics of Cyclostationary Process)

  • 안우현;나선필;서보석
    • 방송공학회논문지
    • /
    • 제19권2호
    • /
    • pp.195-204
    • /
    • 2014
  • 이 논문에서는 순환정상 프로세스의 고차 통계 특성을 바탕으로 2-FSK, 4-FSK, 8-FSK, MSK, BPSK, QPSK, 8-PSK, 16-QAM, 32-QAM, 64-QAM 등 10개의 기저대역 디지털 변조신호를 자동으로 인식하는 방법을 제안하였다. 변조신호의 고유한 성질을 나타내는 특징변수로는 1차 순환 모멘트와 고차 순환 큐뮬런트를 이용하였다. 제안한 변조인식기는 크게 두 단계로 구성되며, 첫 번째 단계에서는 1차 순환 모멘트가 나타내는 첨두치를 이용하여 M-FSK와 비FSK로 변조신호를 분류한다. 두 번째 단계에서는 비FSK를 분류하기 위해 고차 순환 큐뮬런트 값을 이용하는 Gaussian 혼합 모델 기반의 분류기를 적용하였다. 제안한 방법의 성능을 검증하기 위해서 모의실험을 실시하였다. 모의실험 결과 제안한 분류기는 주파수와 위상 옵셋이 존재하는 환경에서도 우수한 분류확률을 나타내었다.

딥러닝 기반 자동 변조 인식 성능 분석 (Performance analysis in automatic modulation classification based on deep learning)

  • 강종진;김재현
    • 한국정보통신학회논문지
    • /
    • 제25권3호
    • /
    • pp.427-432
    • /
    • 2021
  • 본 논문에서는 미상의 통신신호에 대한 자동 변조 인식을 위하여 심층신경망인 딥뉴럴네트워크를 적용하여 변조 형태를 식별하고 그 성능을 분석하였다. 신경망 입력 데이터는 변조된 신호의 시간영역 디지털샘플 데이터, FFT(Fast Fourier Transform)를 적용한 주파수영역 데이터, 시간 및 주파수영역 혼합데이터를 사용하여 각각의 변조인식 성능을 확인하였다. 아날로그 변조 및 디지털 변조 신호 11종에 대하여 -20~18 dB 까지 다양한 SNR(Signal to Noise Ratio) 환경에서 변조인식 성능을 확인하고 그 성능을 분석하였으며, 입력 데이터의 종류에 따른 학습 속도를 확인함으로써 제안한 방법이 실제적인 자동변조 인식 시스템 구축에 효과적인 방법임을 확인 하였다.

M-FSK 변조 신호 분류를 위한 효율적인 진폭 스펙트럼의 첨두 검출 방법 (An Efficient Peak Detection Algorithm in Magnitude Spectrum for M-FSK Signal Classification)

  • 안우현;서보석
    • 방송공학회논문지
    • /
    • 제19권6호
    • /
    • pp.967-970
    • /
    • 2014
  • 이 논문에서는 M-FSK(frequency shift keying) 변조신호를 자동으로 분류하는데 필요한 효율적인 첨두 검출 방법을 제안하였다. 다른 디지털 변조신호와 FSK 신호는 진폭 스펙트럼의 특성을 이용하여 분류할 수 있다. FSK 신호의 진폭 스펙트럼은 다른 디지털 변조신호와 다르게 변조차수와 동일한 수의 첨두를 나타낸다. 일반적으로 신호의 첨두를 검출하기 위해서는 임계치가 필요한데, 변조인식과 같이 사전에 신호에 대한 정보가 없는 경우 임계치를 정하기 어려운 점이 있다. 이 논문에서는 진폭 스펙트럼의 히스토그램을 이용하여 자동으로 간단하게 임계치를 결정하는 방법을 제시하였다. 모의실험 결과 적은 수의 표본과 잡음이 많은 환경에서도 매우 우수한 분류확률을 나타내었다.

다중경로 페이딩 환경에서 HOS와 WT을 이용한 디지털 변조형태 인식 (Digital Modulation Types Recognition using HOS and WT in Multipath Fading Environments)

  • 박철순
    • 전자공학회논문지CI
    • /
    • 제45권5호
    • /
    • pp.102-109
    • /
    • 2008
  • 본 논문은 다중경로 페이딩 채널 조건에서 사전 정보없이 입사하는 디지털 신호 10종의 변조형태를 고정확도로 인식할 수 있도록 고차 통계량(HOS)과 웨이브릿 변환(WT)에서 선정된 특징(key features)을 이용한 견실한 하이브리드 분류기를 제안하였다. 제안된 분류기는 실제 시나리오를 고려하여 다양한 다중경로 환경(즉, 농촌, 소도시, 도심지역)에서 측정된 채널 데이터를 이용하였다. 실제 측정된 다중경로 페이딩 채널 데이터를 이용하여 Holdout-like 방식으로 총 15개 채널 중 9개 채널은 트레이닝용으로 사용하고, 나머지 6개 채널은 테스트용으로 사용하였다. 제안된 분류기는 다중경로 환경에서 높은 변별력을 유지하는 HOS 특징을 기반으로 구현되었고, AMA(Alphabet Matched Algorithm) 또는 MMA(Multi-modulus Algerian)와 같은 등화기법의 적용없이 분류가 어렵다고 알려진 MQAM신호(M=16, 64, 256)들에 대해서만 WT 특징을 적용하였다. 선정된 특징들을 이용한 변조인식은 입력공간에서 최대 마진을 갖는 하이퍼 공간으로 매핑시킴으로서 분류 능력이 우수하다고 알려진 SVM 메소드를 적용하여 시뮬레이션을 실시하였다. 제안된 분류기의 성능은 트레이닝 채널과 테스트 채널에서 WT 또는 HOS 특징만을 단독으로 사용하는 분류기에 비해 현저한 성능 향상을 보였고, 특히, MQAM 신호의 인식률은 낮은 SNR레벨에서도 거의 완전하게 분류되었다.