• Title/Summary/Keyword: digital-to-analog converter (DAC)

Search Result 115, Processing Time 0.024 seconds

Analysis of Phase Noise in Frequency Synthesizer with DDS Driven PLL Architecture (DDS Driven PLL 구조 주파수 합성기의 위상 잡음 분석)

  • Kwon, Kun-Sup;Lee, Sung-Jae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.11
    • /
    • pp.1272-1280
    • /
    • 2008
  • In this paper, we have proposed a phase noise model of fast frequency hopping synthesizer with DDS Driven PLL architecture. To accurately model the phase noise contribution of noise sources in frequency hopping synthesizer, they were investigated using model of digital divider for PLL, DAC for DDS and Leeson's model for reference oscillator and VCO. Especially it was proposed that the noise component of low pass filter was considered together with the phase noise of VCO. Under assuming linear operation of a phase locked loop, the phase noise transfer functions from noise sources to the output of synthesizer was analyzed by superposition theory. The proposed phase noise prediction model was evaluated and its results were compared with measured data.

I/Q channel 12-Bit 120MHz CMOS D/A Converter for WLAN (무선랜용 I/Q 채널 12bit 120MHz CMOS D/A 변환기 설계)

  • Ha, Sung-Min;Nam, Tae-Kyu;Seo, Sung-Uk;Shin, Sun-Hwa;Joo, Chan-Yang;Yoon, Kwang-S.
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.83-89
    • /
    • 2006
  • This paper describes the design of I/Q channel 12bit Digital-to-Analog Converter(DAC) which shows the conversion rate of 120MHz and the power supply of 3.3V with 0.35um CMOS n-well 1-poly 4-metal process for advanced wireless transceiver. The proposed DAC utilizes 4-bit thermometer decoder with 3 stages for minimum glitch energy and linearity error. Also, using a optimized 4bit thermometer decoder for the decrement of the chip area. Integral nonlinearity(INL) of ${\pm}1.6LSB$ and differential nonlinearity(DNL) of ${\pm}1.3LSB$ have been measured. In single tone test, the ENOB of the proposed 12bit DAC is 10.5bit and SFDR of 73dB(@ Fs=120MHz, Fin=1MHz) is measured, respectively. Dual-tone test SFDR is 61 dB (@ Fs=100MHz, Fin=1.5MHz, 2MHz). Glitch energy of 31 pV.s is measured. The converter consumes a total of 105mW from 3.3-V power supply.

A Dual Charge Pump PLL-based Clock Generator with Power Down Schemes for Low Power Systems (저 전력 시스템을 위한 파워다운 구조를 가지는 이중 전하 펌프 PLL 기반 클록 발생기)

  • Ha, Jong-Chan;Hwang, Tae-Jin;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.11
    • /
    • pp.9-16
    • /
    • 2005
  • This paper proposes a programmable PLL (phase locked loop) based clock generator supporting a wide-range-frequency input and output for high performance and low power SoC with multiple clock frequencies domains. The propose system reduces the locking time and obtains a wide range operation frequency by using a dual-charge pumps scheme. For low power operation of a chip, the locking processing circuits of the proposed PLL doesn't be working in the standby mode but the locking data are retained by the DAC. Also, a tracking ADC is designed for the fast relocking operation after stand-by mode exit. The programmable output frequency selection's circuit are designed for supporting a optimized DFS operation according to job tasks. The proposed PLL-based clock system has a relock time range of $0.85{\mu}sec{\sim}1.3{\mu}sec$($24\~26$cycle) with 2.3V power supply, which is fabricated on $0.35{\mu}m$ CMOS Process. At power-down mode, PLL power saves more than $95\%$ of locking mode. Also, the PLL using programmable divider has a wide locking range ($81MHz\~556MHz$) for various clock domains on a multiple IPs system.

Delta Sigma Modulation of Controller Input Signal for the LED Light Driver (시그마 델타 변조에 의한 LED 드라이버의 입력 콘트롤러 설계)

  • Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.151-155
    • /
    • 2016
  • In this paper, we present the LED dimming control system by using ADPCM (Adaptive Differential Pulse Code Modulation). This ADPCM apparatus accurately controls the LED current with high resolution reducing the RFI (radio frequency interference) due to the spreading out of the harmonics of current of pulses. Additionally, this makes it easier to increase the accuracy of control operation. This study introduces to make a digitally controlled circuit for controlling LED with high-energy efficient by adopting pulse current to LED. The LED current drive system we designed are two systems, the digitally-controlled unit and analog switching mode power supply unit, can be developed separately. The simulation shows the sigma delta modulation of digital to analog converter's output when the input level is 0.7. From this simulation, the output is approached to accurately 0.15% to target value with 510 pulses.

PC-based Control System of Serially Connected Multi-channel Speakers (직렬연결 다채널 스피커의 PC 기반 제어 시스템)

  • Lee, Sun-Yong;Kim, Tae-Wan;Byun, Ji-Sung;Song, Moon-Vin;Chung, Yun-Mo
    • The KIPS Transactions:PartA
    • /
    • v.15A no.6
    • /
    • pp.317-324
    • /
    • 2008
  • In this paper, we propose a system which easily controls the existing serially connected multi-channel speakers in a general personal computer by using a USB(Universal Serial Bus) interface. The personal computer as a host of the USB interface analyzes a sound source and sends audio data in a real-time fashion by the use of the isochronous transmission, one of four transmission methods provided by the USB interface. In addition, a channel is assigned by means of the bulk transmission, one of four transmission methods provided by the USB interface. Transmitted data from the USB host are sent to each speaker through compression and packet generation process. Each speaker detects corresponding digital data and regenerates audio signals through DAC(Digital-to-Analog Converter). A user can easily select a sound source file and a channel by the use of a GUI environment in a personal computer.

Capacitive Readout Circuit for Tri-axes Microaccelerometer with Sub-fF Offset Calibration

  • Ouh, Hyun Kyu;Choi, Jungryoul;Lee, Jungwoo;Han, Sangyun;Kim, Sungwook;Seo, Jindeok;Lim, Kyomuk;Seok, Changho;Lim, Seunghyun;Kim, Hyunho;Ko, Hyoungho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.83-91
    • /
    • 2014
  • This paper presents a capacitive readout circuit for tri-axes microaccelerometer with sub-fF offset calibration capability. A charge sensitive amplifier (CSA) with correlated double sampling (CDS) and digital to equivalent capacitance converter (DECC) is proposed. The DECC is implemented using 10-bit DAC, charge transfer switches, and a charge-storing capacitor. The DECC circuit can realize the equivalent capacitance of sub-fF range with a smaller area and higher accuracy than previous offset cancelling circuit using series-connected capacitor arrays. The readout circuit and MEMS sensing element are integrated in a single package. The supply voltage and the current consumption of analog blocks are 3.3 V and $230{\mu}A$, respectively. The sensitivities of tri-axes are measured to be 3.87 mg/LSB, 3.87 mg/LSB and 3.90 mg/LSB, respectively. The offset calibration which is controlled by 10-bit DECC has a resolution of 12.4 LSB per step with high linearity. The noise levels of tri-axes are $349{\mu}g$/${\sqrt}$Hz, $341{\mu}g$/${\sqrt}$Hz and $411{\mu}g$/${\sqrt}$Hz, respectively.

A 10-bit 20-MS/s Asynchronous SAR ADC using Self-calibrating CDAC (자체 보정 CDAC를 이용한 10비트 20MS/s 비동기 축차근사형 ADC)

  • Youn, Eun-ji;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.35-43
    • /
    • 2019
  • A capacitor self-calibration is proposed to improve the linearity of the capacitor digital-to-analog converter (CDAC) for an asynchronous successive approximation register (SAR) analog-to-digital converter (ADC) with 10-bit resolution. The proposed capacitor self-calibration is performed so that the value of each capacitor of the upper 5 bits of the 10-bit CDAC is equal to the sum of the values of the lower capacitors. According to the behavioral simulation results, the proposed capacitor self-calibration improves the performances of differential nonlinearity (DNL) and integral nonlinearity (INL) from -0.810/+0.194 LSBs and -0.832/+0.832 LSBs to -0.235/+0.178 LSBs and -0.227/+0.227 LSBs, respectively, when the maximum capacitor mismatch of the CDAC is 4%. The proposed 10-bit 20-MS/s asynchronous SAR ADC is implemented using a 110-nm CMOS process with supply of 1.2 V. The area and power consumption of the proposed asynchronous SAR ADC are $0.205mm^2$ and 1.25 mW, respectively. The proposed asynchronous SAR ADC with the capacitor calibration has a effective number of bits (ENOBs) of 9.194 bits at a sampling rate of 20 MS/s about a $2.4-V_{PP}$ differential analog input with a frequency of 96.13 kHz.

Design of High-Speed Comparators for High-Speed Automatic Test Equipment

  • Yoon, Byunghun;Lim, Shin-Il
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.291-296
    • /
    • 2015
  • This paper describes the design of a high-speed comparator for high-speed automatic test equipment (ATE). The normal comparator block, which compares the detected signal from the device under test (DUT) to the reference signal from an internal digital-to-analog converter (DAC), is composed of a rail-to-rail first pre-amplifier, a hysteresis amplifier, and a third pre-amplifier and latch for high-speed operation. The proposed continuous comparator handles high-frequency signals up to 800MHz and a wide range of input signals (0~5V). Also, to compare the differences of both common signals and differential signals between two DUTs, the proposed differential mode comparator exploits one differential difference amplifier (DDA) as a pre-amplifier in the comparator, while a conventional differential comparator uses three op-amps as a pre-amplifier. The chip was implemented with $0.18{\mu}m$ Bipolar CMOS DEMOS (BCDMOS) technology, can compare signal differences of 5mV, and operates in a frequency range up to 800MHz. The chip area is $0.514mm^2$.

A CMOS Duty Cycle Corrector Using Dynamic Frequency Scaling for Coarse and Fine Tuning Adjustment (코오스와 파인 조정을 위한 다이나믹 주파수 스케일링 기법을 사용하는 CMOS 듀티 사이클 보정 회로)

  • Han, Sangwoo;Kim, Jongsun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.142-147
    • /
    • 2012
  • This paper presents a mixed-mode CMOS duty-cycle corrector (DCC) circuit that has a dynamic frequency scaling (DFS) counter and coarse and fine tuning adjustments. A higher duty-cycle correction accuracy and smaller jitter have been achieved by utilizing the DFS counter that reduces the bit-switching glitch effect of a digital to analog converter (DAC). The proposed circuit has been designed using a 0.18-${\mu}m$ CMOS process. The measured duty cycle error is less than ${\pm}1.1%$ for a wide input duty-cycle range of 25-75% over a wide freqeuncy range of 0.5-1.5 GHz.

The Design of 10-bit 200MS/s CMOS Parallel Pipeline A/D Converter (10-비트 200MS/s CMOS 병렬 파이프라인 아날로그/디지털 변환기의 설계)

  • Chung, Kang-Min
    • The KIPS Transactions:PartA
    • /
    • v.11A no.2
    • /
    • pp.195-202
    • /
    • 2004
  • This paper introduces the design or parallel Pipeline high-speed analog-to-digital converter(ADC) for the high-resolution video applications which require very precise sampling. The overall architecture of the ADC consists of 4-channel parallel time-interleaved 10-bit pipeline ADC structure a]lowing 200MSample/s sampling speed which corresponds to 4-times improvement in sampling speed per channel. Key building blocks are composed of the front-end sample-and-hold amplifier(SHA), the dynamic comparator and the 2-stage full differential operational amplifier. The 1-bit DAC, comparator and gain-2 amplifier are used internally in each stage and they were integrated into single switched capacitor architecture allowing high speed operation as well as low power consumption. In this work, the gain of operational amplifier was enhanced significantly using negative resistance element. In the ADC, a delay line Is designed for each stage using D-flip flops to align the bit signals and minimize the timing error in the conversion. The converter has the power dissipation of 280㎽ at 3.3V power supply. Measured performance includes DNL and INL of +0.7/-0.6LSB, +0.9/-0.3LSB.