• Title/Summary/Keyword: digital surface map

Search Result 182, Processing Time 0.025 seconds

A Study on the Improvement of Sub-divided Land Cover Map Classification System - Based on the Land Cover Map by Ministry of Environment - (세분류 토지피복지도 분류체계 개선방안 연구 - 환경부 토지피복지도를 중심으로 -)

  • Oh, Kwan-Young;Lee, Moung-Jin;No, Woo-Young
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.105-118
    • /
    • 2016
  • The purpose of this study is to improve the classification system of sub-divided land cover map among the land cover maps provided by the Ministry of Environment. To accomplish the purpose, first, the overseas country land cover map classification items were examined in priority. Second, the area ratio of each item established by applying the previous sub-divided classification system was analyzed. Third, the survey on the improvement of classification system targeting the users (experts and general public) who actually used the sub-divided land cover map was carried out. Fourth, a new classification system which improved the previous system by reclassifying 41 classification items into 33 items was finally established. Fifth, the established land cover classification items were applied on study area, and the land cover classification result according to the improvement method was compared with the previous classification system. Ilsan area in Goyang city where there are diverse geographic features with various land surface characteristics such as the urbanization area and agricultural land were distributed evenly were selected as the study area. The basic images used in this study were 0.25 m aerial ortho-photographs captured by the National Geographic Information Institute (NGII), and digital topographic map, detailed stock map plan, land registration map and administrative area map were used as the relevant reference data. As a result of applying the improved classification system into the study area, the area of culture-sports, leisure facilities was $1.84km^2$ which was approximately more than twice larger in comparison to the previous classification system. Other areas such as transportation and communication system and educational administration facilities were not classified. The result of this study has meaningful significance that it reflects the efficiency for the establishment and renewal of sub-divided land cover map in the future and actual users' needs.

Development of the Surface Forest Fire Behavior Prediction Model Using GIS (GIS를 이용한 지표화 확산예측모델의 개발)

  • Lee, Byungdoo;Chung, Joosang;Lee, Myung-Bo
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.481-487
    • /
    • 2005
  • In this study, a GIS model to simulate the behavior of surface forest fires was developed on the basis of forest fire growth prediction algorithm. This model consists of three modules for data-handling, simulation and report writing. The data-handling module was designed to interpret such forest fire environment factors as terrain, fuel and weather and provide sets of data required in analyzing fire behavior. The simulation module simulates the fire and determines spread velocity, fire intensity and burnt area over time associated with terrain slope, wind, effective humidity and such fuel condition factors as fuel depth, fuel loading and moisture content for fire extinction. The module is equipped with the functions to infer the fuel condition factors from the information extracted from digital vegetation map sand the fuel moisture from the weather conditions including effective humidity, maximum temperature, precipitation and hourly irradiation. The report writer has the function to provide results of a series of analyses for fire prediction. A performance test of the model with the 2002 Chungyang forest fire showed the predictive accuracy of 61% in spread rate.

Effect of post-rinsing time and method on accuracy of denture base manufactured with stereolithography

  • Katheng, Awutsadaporn;Kanazawa, Manabu;Komagamine, Yuriko;Iwaki, Maiko;Namano, Sahaprom;Minakuchi, Shunsuke
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.1
    • /
    • pp.45-55
    • /
    • 2022
  • PURPOSE. This in vitro study investigates the effect of different post-rinsing times and methods on the trueness and precision of denture base resin manufactured through stereolithography. MATERIALS AND METHODS. Ninety clear photopolymer resin specimens were fabricated and divided into nine groups (n = 10) based on rinsing times and methods. All specimens were rinsed with 99% isopropanol alcohol for 5, 10, and 15 min using three methods-automated, ultrasonic cleaning, and hand washing. The specimens were polymerized for 30 min at 40℃. For trueness, the scanned intaglio surface of each SLA denture base was superimposed on the original standard tessellation language (STL) file using best-fit alignment (n = 10). For precision, the scanned intaglio surface of the STL file in each specimen group was superimposed across each specimen (n = 45). The root mean square error (RMSE) was measured, and the data were analyzed statistically through one-way ANOVA and Tukey test (α < .05). RESULTS. The 10-min automated group exhibited the lowest RMSE. For trueness, this was significantly different from specimens in the 5-min hand-washed group (P < .05). For precision, this was significantly different from those of other groups (P < .05), except for the 15-min automated and 15-min ultrasonic groups. The color map results indicated that the 10-min automated method exhibited the most uniform distribution of the intaglio surface adaptation. CONCLUSION. The optimal postprocessing rinsing times and methods for achieving clear photopolymer resin were found to be the automated method with rinsing times of 10 and 15 min, and the ultrasonic method with a rinsing time of 15 min.

Estimation of Soil Loss Changes and Sediment Transport Path Using GIS and Multi-Temporal RS data (GIS 및 다시기 RS 자료를 이용한 토양손질량 변화 및 이동경로 추정)

  • 권형중;박근애;김성준
    • Spatial Information Research
    • /
    • v.10 no.1
    • /
    • pp.139-152
    • /
    • 2002
  • The purpose of this study is to estimate temporal soil loss change according to long-term land cover changes using G1S and RS. Revised USLE(Universal Soil Loss Equation) factors were prepared by using point rainfall data, DEM(Digital Elevation Model), soil map and land cover map. During the past two decades, land cover changes were traced by using Landsat MSS and TM data. As a result, forest area in 2000 has decreased 25.3 $km^2$ compared with that in 1990. Soil loss has decreased 3751.2 tou/yr. On the other hand, upland area has increased 22.5 $km^2$. Soil loss of upland has increased 5395.4 to/yr. Therefore, soil loss in 2000 increased 6.3 kg/$m^2$/yr compared with that in 1990. This was mainly caused by the increased upland area.

  • PDF

Measurement of Out-of-plane Displacement in a Spot Welded Canti-levered Plate using Laser Speckle Interferometry with 4-step Phase Shifting Technique (레이저스펙클 간섭법과 4단계 위상이동법에 의한 외팔보 점용접부의 면외 변위측정)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Na, Eui-Gyun;Koh, Seung-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.66-72
    • /
    • 2002
  • Electronic Speckle Pattern Interferometry (ESPI) has been recently developed and widely used because it has advantage to be able to measure surface deformations of engineering components and materials in industrial areas with non-contact. The speckle patterns to be formed with interference and scattering phenomena can measure not only out-of-plane but also in-plane deformations, together with the use of digital image equipment to process the informations included in the speckle patterns and to display consequent interferogram on a computer monitor. In this study, the experimental results of a canti-levered plate using ESPI were compared with those obtained from the simple beam theory. The ESPI results of the canti-levered plate analyzed by 4-step phase shifting method are close to the theoretical expectation. Also, out-of-plane displacements of a spot welded cacti-levered plate were measured by ESPI with 4-step phase shifting technique. The phase map of the spot welded cacti-levered plate is quite different from that of the canti-levered plate without spot welding.

A Study on the Measurement of the Internal Crack in Flange Welding Zone by Digital Shearography (전자전단 간섭법을 이용한 플랜지 용접부 내부 결함 측정에 관한 연구)

  • Kim, Jeong-Pil;Kang, Young-June;Park, Sang-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.97-104
    • /
    • 2009
  • There is a many kinds with nondestructive testing such as RT and UT representatively. Referred before two testing methods there is a limit which is spatial such as nuclear pipe, small vessel, sealing up vessel. So a new technique needs to overcome the limit which is spatial. shearography will be able to overcome the limit which is spatial. This paper introducing shearography which was known as non-contact full-field testing method and It is an interferometric technique for measurement of surface deformation such as displacement or displacement gradient. Also, a research about internal defect of the flange welding zone was accomplished. About variation with method pressurized with the Gaseous Nitrogen. Phase map where is various were measured according to changing a sheared direction, size of crack and loaded pressure. Consequently, crack quantitatively to be detected qualitatively was measured by using shearography.

Fractal-Based Interpolation of Sea Floor Terrains (프랙탈에 기초한 해저지형의 보간)

  • Lee, Hyun-Shik;Park, Dong-Jin;Jin, Gang-Gyoo
    • Journal of Navigation and Port Research
    • /
    • v.33 no.6
    • /
    • pp.451-456
    • /
    • 2009
  • In this paper, we presents an algorithm which generates its high-resolution DTM using a low-resolution DTM of the sea floor terrain and fractal theory. The fractal dimension of each patch region divided from the DTM is extracted and then with this information and original data, each cell region in the patch is interpolated using the midpoint displacement method and a median filter is incorporated to generate natural and smooth sea floor surface. The effectiveness of the proposed algorithm is tested on a fractal terrain map.

A Study on Optimal Site Selection for the Artificial Recharge System Installation Using TOPSIS Algorithm

  • Lee, Jae One;Seo, Minho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.2
    • /
    • pp.161-169
    • /
    • 2016
  • This paper is intended to propose a novel approach to select an optimal site for a small-scaled artificial recharge system installation using TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) with geospatial data. TOPSIS is a MCDM (Multi-Criteria Decision Making) method to choose the preferred one of derived alternatives by calculating the relative closeness to an ideal solution. For applying TOPSIS, in the first, the topographic shape representing optimal recovery efficiency is defined based on a hydraulic model experiment, and then an appropriate surface slope is determined for the security of a self-purification capability with DEM (Digital Elevation Model). In the second phase, the candidate areas are extracted from an alluvial map through a morphology operation, because local alluvium with a lengthy and narrow shape could be satisfied with a primary condition for the optimal site. Thirdly, a shape file over all candidate areas was generated and criteria and their values were assigned according to hydrogeologic attributes. Finally, TOPSIS algorithm was applied to a shape file to place the order preference of candidate sites.

Forest Vertical Structure Mapping from Bi-Seasonal Sentinel-2 Images and UAV-Derived DSM Using Random Forest, Support Vector Machine, and XGBoost

  • Young-Woong Yoon;Hyung-Sup Jung
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.123-139
    • /
    • 2024
  • Forest vertical structure is vital for comprehending ecosystems and biodiversity, in addition to fundamental forest information. Currently, the forest vertical structure is predominantly assessed via an in-situ method, which is not only difficult to apply to inaccessible locations or large areas but also costly and requires substantial human resources. Therefore, mapping systems based on remote sensing data have been actively explored. Recently, research on analyzing and classifying images using machine learning techniques has been actively conducted and applied to map the vertical structure of forests accurately. In this study, Sentinel-2 and digital surface model images were obtained on two different dates separated by approximately one month, and the spectral index and tree height maps were generated separately. Furthermore, according to the acquisition time, the input data were separated into cases 1 and 2, which were then combined to generate case 3. Using these data, forest vetical structure mapping models based on random forest, support vector machine, and extreme gradient boost(XGBoost)were generated. Consequently, nine models were generated, with the XGBoost model in Case 3 performing the best, with an average precision of 0.99 and an F1 score of 0.91. We confirmed that generating a forest vertical structure mapping model utilizing bi-seasonal data and an appropriate model can result in an accuracy of 90% or higher.

A Study on the Development Site of an Open-pit Mine Using Unmanned Aerial Vehicle (무인항공기를 이용한 노천광산 개발지 조사에 관한 연구)

  • Kim, Sung-Bo;Kim, Doo-Pyo;Back, Ki-Suk
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.1
    • /
    • pp.136-142
    • /
    • 2021
  • Open-pit mine development requires continuous management because of topographical changes and there is a risk of accidents if the current status survey is performed directly in the process of calculating the earthwork. In this study, the application of UAV photogrammetry, which can acquire spatial information without direct human access, was applied to open-pit mines development area and analyzed the accuracy, earthwork, and mountain restoration plan to determine its applicability. As a result of accuracy analysis at checkpoint using ortho image and Digital Surface Model(DSM) by UAV photogrammetry, Root Mean Square Error(RMSE) is 0.120 m in horizontal and 0.150 m in vertical coordinates. This satisfied the tolerance range of 1:1,000 digital map. As a result of the comparison of the earthwork, UAV photogrammetry yielded 11.7% more earthwork than the conventional survey method. It is because UAV photogrammetry shows more detailed topography. And result of monitoring mountain restoration showed possible to determine existence of rockfall prevention nets and vegetation. If the terrain changes are monitored by acquiring images periodically, the utility of UAV photogrammetry will be further useful to open-pit mine development.