• Title/Summary/Keyword: digital servo

Search Result 241, Processing Time 0.022 seconds

Repetitive Control for Track-Following Servo of an Optical Disk Drive Using Linear Matrix Inequalities (선형 행렬 부등식을 이용한 광 디스크 드라이브의 트랙 추종 서보를 위한 반복 제어)

  • 도태용;문정호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.117-123
    • /
    • 2003
  • Rotational machines such as optical disk drives, hard disk drives, and so on are subject to periodic disturbances caused by their mechanical characteristics. In the meanwhile, it is well known that repetitive control rejects periodic disturbance effectively. This paper presents a practical application of repetitive control to the track-following servo of an optical disk drive. The repetitive control system is composed of two repetitive controllers which compensate for periodic disturbances generated by track geometry and eccentric rotation of disk and a feedback controller stabilizing the feedback loop. A robust stability for all plant uncertainties is proved using linear matrix inequalities (LMIs). In the controller design, a weighting function is introduced for the feedback controller to ensure a minimum loop gain and a sufficient phase margin. The repetitive controllers and the feedback controller are designed by solving an optimization problem which can consider the robust stability condition and the system performance. The developed repetitive control system is implemented in the digital control system with a 16-bit fixed-point digital signal processor (DSP). Through simulation and experiment. The feasibility of the proposed repetitive control system is verified.

Computer Simulation and Control performance evaluation for Feedback System of Ultra Precision Positioning by using Laser Interferometer (Laser Interferometer를 이용한 초정밀위치결정 피드백시스템의 컴퓨터 시뮬레이션 및 제어성능 평가)

  • Kim, Jae-Yeol;Kim, Young-Seok;Yoon, Sung-Un;Kwac, Lee-Ku;Han, Jae-Ho;You, Sin
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.68-74
    • /
    • 2001
  • This system is composed of fine and coarse apparatus, measurement system and control system. Piezoelectric actuator is designed for fine positioning. We make a study of precision apparatus that is used in the various industrial machine. The study was carried out to develope a precision positioning apparatus, consisting of servo motor and piezoelectric actuator. Coarse positioning using lead screw is drived by servo motor. Control system output a signal from laser interferometer to amplifier of servo motor and piezoelectric actuator after digital signal processing(DSP). Resolution of this apparatus measure with laser interferometer. In this study, design method and control system with ultra precision position apparatus are researched. As the first step, we have estimated for control performance and system stability before an actual apparatus is manufactured by MATLAB with SIMULINK including various functions those are composed of pre-design and system modeling.

  • PDF

Computer Simulation and Control Performance Evaluation for Feedback System of Ultra Positioning by using Laser Interferometer (Laser Interferometer를 이용한 초정밀위치결정 피드백시스템의 컴퓨터 시뮬레이션 및 제어성능 평가)

  • 김재열;이규태;곽이구;한재호;김창현
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.17-25
    • /
    • 2002
  • This system is composed of fine and coarse apparatus, measurement system and control system. Piezoelectric actuator is designed far fee positioning. We make a study of precision apparatus that is used in the various industrial machine. The study was carried out to develope a precision positioning apparatus, consisting of servo motor and piezoelectric actuator Coarse positioning using lead screw is thrived by servo motor. Control system output a signal from laser interferometer to amplifier of servo motor and piezoelectric actuator after digital signal processing (DSP). Resolution of this apparatus measure with laser interferometer. In this study, design method and control system with ultra precision position apparatus are researched. As the first step, we have estimated for control performance and system stability before an actual apparatus is manufactured by MATLAB with SIMUUNK including various frictions those are composed of pre-design and system modeling.

Design of A Neuro-Fuzzy Controller for Speed Control Applied to AC Servo Motor (AC 서보 모터의 속도 제어를 위한 뉴로-퍼지 제어기 설계)

  • Ku, Ja-Yl;Kim, Sang-Hun
    • 전자공학회논문지 IE
    • /
    • v.47 no.3
    • /
    • pp.26-34
    • /
    • 2010
  • In this study, a neuro-fuzzy controller based on the characteristics of fuzzy controlling and structure of artificial neural networks(ANN). This neuro-fuzzy controller has each advantage from fuzzy and ANN, respectively. Plus, it can handle their own shortcomings and parameters in the controller can be tuned by on-line. To verify the proposed controller, it has applied to the AC servo motor which is popular item in robot control field. General PID and fuzzy controller are also applied to the same motor so stability and good characteristic of the proposed controller are compared and proved. Especially, the experiment for variable load is investigated and performance result is proved also.

Experimental Study on Control of Autopilot System(I) (자동운항시스템의 제어에 관한 실험적 연구)

  • Han, Bong-Ju;Bae, Gyeong-Su;Kim, Hwan-Seong;Kim, Sang-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2449-2457
    • /
    • 1996
  • This paper presents a design method for autopilot control system in course change to the specified direction based on a robust digital servo controlmelthod incorporating the concept of the annihilator polynormial. The mathematicalmodel of ship turning motion is very complex in the view of practical control because it has time varying parameters, nonlinear and dead time terms. To apply the digital servo control method based on computer control, the model is linearized at an equilibrium point and discretized with appropriate sampling time. The control algorithm was evaluated on the basis of computer simulation for a model ship and the practical experiment was carried out with an image processing method for measurement of ship position in a water tank. The results of overall experiments show that the proposed control method will be one of good way to keep a track plotted in the map.

The Application of Fuzzy Reaching Law Control in AC Position Servo System

  • Yang Yangxi;Liu Ding
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.360-364
    • /
    • 2001
  • In this paper, a novel method of reaching law variable structure control based on fuzzy rules is present, which is that the reaching law parameters is on-line adjusted by fuzzy rules. This method is used in a digital ac position servo system, the experiment results show that the system designed by this method has both satisfactory quality and very smaller chattering.

  • PDF

Study on Design PI Controller Adopted Sliding Mode Control for DC Servo Motor Position Control (슬라이딩 모드 제어 이론을 적용한 PI 제어기에 의한 직류 서보 모타의 위치 제어에 관한 연구)

  • Park, Kyeong-Bae;Won, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.29-32
    • /
    • 1989
  • This paper proposes new position control method for DC servo motor by PI controller adopting sliding mode control. By adding sliding mode controller to conventional PI controller good robustness is obtained with good transient response and no steady state error which are merits in PI controller. In order to use microprocessor for digital control the principles of sliding mode control conventionally explained in continous-time system are extended to discrete-time system.

  • PDF

The Implementation of State Observer for Position Control of Electrohydraulic Servo Systema (유압서보 시스템의 위치제어를 위한 관측제어기의 실현화 연구)

  • 이동권;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.673-677
    • /
    • 1986
  • This paper deals with the state observer-controller which observes unmeasurable state variables of the system and then uses the estimated values as feedback signals. The linearized model is deduced from the nonlinear electrohydraulic servo system. The 4th order analog linear observer-controller and the 2nd order digital one are modelled and implemented using OP amplifiers and IBM PC/XT, respectively. The two observer are experimentally used in the control of an electrohydraulic system. The results are satisfactory in estimation performance and in tracking performance to command signal.

  • PDF

Implementation and performance analysis of digital servo controller using LQG/LTR method (LQG/LTR 방법을 이용한 견실한 디지탈 서어보 제어기 실현 및 성능분석)

  • 최중락;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.570-574
    • /
    • 1987
  • The robust servo controller is designed by the procedure of LQG/LTR method in the continuous-time domain. This design results is equivalently converted to the discrete-time suboptimal LQG in order to implement by the microcomputer system. The LTP, condition of the discrete-time LQG is analyzed and approved by the experiments against the uncertainty of real plant, the discretized LQG /LTR control shows the good robustness.

  • PDF

Friction Compensation For High Precision Control of Servo Systems Using Adaptive Neural Network

  • Chung, Dae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.179-179
    • /
    • 2000
  • An adaptive neural network compensator for stick-slip friction phenomena in servo systems is proposed to supplement the traditionally available position and velocity control loops for precise motion control. The neural network compensator plays a role of canceling the effect of nonlinear slipping friction force. This enables the mechatronic systems more precise control and realistic design in the digital computer. It was confirmed that the control accuracy is more improved near zero velocity and the points of changing the moving direction through numerical simulation

  • PDF