• Title/Summary/Keyword: digital reconstruction

Search Result 438, Processing Time 0.036 seconds

3D Precision Building Modeling Based on Fusion of Terrestrial LiDAR and Digital Close-Range Photogrammetry (지상라이다와 디지털지상사진측량을 융합한 건축물의 3차원 정밀모델링)

  • 사석재;이임평;최윤수;오의종
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.529-534
    • /
    • 2004
  • The increasing need and use of 3D GIS particularly in urban areas has produced growing attention on building reconstruction. Nowadays, the use of close-range data for building reconstruction has been intensively emphasized since they can provide higher resolution and more complete coverage than airborne sensory data. We developed a fusion approach for building reconstruction from both points and images. The proposed approach was then applied to reconstructing a building model from real data sets acquired from a large existing building. Based on the experimental results, we assured that the proposed approach cam achieve high resolution and accuracy in building reconstruction. The proposed approach can effectively contribute in developing an operational system producing large urban models for 3D GIS.

  • PDF

Three-Dimensional Automatic Target Recognition System Based on Optical Integral Imaging Reconstruction

  • Lee, Min-Chul;Inoue, Kotaro;Cho, Myungjin
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.1
    • /
    • pp.51-56
    • /
    • 2016
  • In this paper, we present a three-dimensional (3-D) automatic target recognition system based on optical integral imaging reconstruction. In integral imaging, elemental images of the reference and target 3-D objects are obtained through a lenslet array or a camera array. Then, reconstructed 3-D images at various reconstruction depths can be optically generated on the output plane by back-projecting these elemental images onto a display panel. 3-D automatic target recognition can be implemented using computational integral imaging reconstruction and digital nonlinear correlation filters. However, these methods require non-trivial computation time for reconstruction and recognition. Instead, we implement 3-D automatic target recognition using optical cross-correlation between the reconstructed 3-D reference and target images at the same reconstruction depth. Our method depends on an all-optical structure to realize a real-time 3-D automatic target recognition system. In addition, we use a nonlinear correlation filter to improve recognition performance. To prove our proposed method, we carry out the optical experiments and report recognition results.

A Framework for Building Reconstruction Based on Data Fusion of Terrestrial Sensory Data

  • Lee, Impyeong;Choi, Yunsoo
    • Korean Journal of Geomatics
    • /
    • v.4 no.2
    • /
    • pp.39-45
    • /
    • 2004
  • Building reconstruction attempts to generate geometric and radiometric models of existing buildings usually from sensory data, which have been traditionally aerial or satellite images, more recently airborne LIDAR data, or the combination of these data. Extensive studies on building reconstruction from these data have developed some competitive algorithms with reasonable performance and some degree of automation. Nevertheless, the level of details and completeness of the reconstructed building models often cannot reach the high standards that is now or will be required by various applications in future. Hence, the use of terrestrial sensory data that can provide higher resolution and more complete coverage has been intensively emphasized. We developed a fusion framework for building reconstruction from terrestrial sensory data, that is, points from a laser scanner, images from digital camera, and absolute coordinates from a total station. The proposed approach was then applied to reconstructing a building model from real data sets acquired from a large complex existing building. Based on the experimental results, we assured that the proposed approach cam achieve high resolution and accuracy in building reconstruction. The proposed approach can effectively contribute in developing an operational system producing large urban models for 3D GIS with reasonable resources.

  • PDF

Update Thresholds of More Accurate Time Stamp for Event Reconstruction (이벤트 재구성을 위한 타임스탬프 갱신 임계치)

  • James, Joshua I.;Jang, Yunsik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.7-13
    • /
    • 2017
  • Many systems rely on reliable timestamps to determine the time of a particular action or event. This is especially true in digital investigations where investigators are attempting to determine when a suspect actually committed an action. The challenge, however, is that objects are not updated at the exact moment that an event occurs, but within some time-span after the actual event. In this work we define a simple model of digital systems with objects that have associated timestamps. The model is used to predict object update patterns for objects with associated timestamps, and make predictions about these update time-spans. Through empirical studies of digital systems, we show that timestamp update patterns are not instantaneous. We then provide a method for calculating the distribution of timestamp updates on a particular system to determine more accurate action instance times.

Iterative Matching Cost Update based Multi-view Stereo Matching Algorithm for 3D Reconstruction and View Synthesis (3차원 복원 및 시점 합성을 위한 반복적인 매칭 비용 업데이트 기반의 다시점 스테레오 매칭 알고리즘)

  • Lee, Min-Jae;Park, Soon-Yong;Um, Gi-Mun;Cheong, Won-Sik;Yun, Joungil;Lee, Jinhwan
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.144-145
    • /
    • 2020
  • 본 논문에서는 정밀한 3차원 복원 및 시점 합성을 위해 매칭 비용을 반복적으로 업데이트하는 Generalized Soft 3D Reconstruction (GenSoft3D) 알고리즘을 제안한다. 먼저 다시점 영상들과 카메라 자세정보가 주어지면 GenSoft3D는 볼륨 기반의 다시점 스테레오 매칭 알고리즘으로 시점별 초기 매칭 비용 볼륨 및 시차 맵을 계산한다. 그 후 정제 과정에서 각 시점은 모든 시차 맵을 이용하여 표면 확률 및 가시 확률을 계산한다. 표면 확률은 초기 매칭 비용 업데이트에 사용하며, 가시 확률은 폐색 영역의 정확한 시차를 계산하기 위해 사용된다. 해당 정제 과정을 일정 횟수 반복할 경우 시점별 고정밀의 시차 맵 획득이 가능하다. 또한 시차 맵의 정확도가 향상됨에 따라 정확한 시점 합성이 가능하다.

  • PDF

A Study on Two-wavelength Digital Holography Using the Fresnel-Bluestein Transform (프레즈넬-불루스타인 변환을 이용한 2파장 디지털 홀로그래픽 연구)

  • Shin, Sanghoon;Kim, Doocheol;Yu, Younghun
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.6
    • /
    • pp.251-254
    • /
    • 2012
  • Dual-wavelength holography has a better axial range than single-wavelength holography, allowing unambiguous phase imaging. The size of a reconstructed image depends on the reconstruction distance and wavelength. The two phase image sizes of different wavelength holograms should be the same in order to apply dual-wavelength holography. The Fresnel-Bluestein transform method is proposed to eliminate the dependence on the reconstruction distance and wavelength. We found that the Fresnel-Bluestein transform is very useful for making different reconstructed image sizes experimentally. Also we applied the Fresnel-Bluestein transform to make the same reconstruction image size in dual wavelength holography.

Design 2-Dimensional Digital Filter In Reconstruction Of EIT

  • Kang, Dong-Hoon;Kang, Byung-Chae;Kim, Ji-Hoon;Hwang, Sang-Pil;Kim, Jin-Yeop;Jang, Jae-Duck;Lee, Seung-Ha;Choi, Bong-Yeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.36-39
    • /
    • 2004
  • Electrical impedance tomography (EIT) has been suffered from the severe ill-posedness which is caused by the inherent low sensitivity of boundary measurements to any changes of internal resistivity values. So, small noise occur unexpected reconstruction image. Generally in EIT system, if measured voltage includes noise, we can't find object location and resistivity values. In this paper, we propose digital filter for measured voltage in EIT. Newton-Raphson is the most..popular algorithm in EIT, but noise cause to blur image. We use Fourier transform (FT) in order to minimize the noise and design the filter. After filtering, result of reconstruction image is improved better than before filtering.

  • PDF

Analysis of Real Estate Market Trend Using Text Mining and Big Data (빅데이터와 텍스트마이닝을 이용한 부동산시장 동향분석)

  • Chun, Hae-Jung
    • Journal of Digital Convergence
    • /
    • v.17 no.4
    • /
    • pp.49-55
    • /
    • 2019
  • This study is on the trend of real estate market using text mining and big data. The data were collected through internet news posted on Naver from August 2016 to August 2017. As a result of TF-IDF analysis, the frequency was high in the order of housing, sale, household, real estate market, and region. Many words related to policies such as loan, government, countermeasures, and regulations were extracted, and the region - related words appeared the most frequently in Seoul. The combination of the words related to the region showed that the frequencies of 'Seoul - Gangnam', 'Seoul - Metropolitan area', 'Gangnam - reconstruction' and 'Seoul - reconstruction' appeared frequently. It can be seen that the people's interest and expectation about the reconstruction of Gangnam area is high.

Nuclear Medicine Physics: Review of Advanced Technology

  • Oh, Jungsu S.
    • Progress in Medical Physics
    • /
    • v.31 no.3
    • /
    • pp.81-98
    • /
    • 2020
  • This review aims to provide a brief, comprehensive overview of advanced technologies of nuclear medicine physics, with a focus on recent developments from both hardware and software perspectives. Developments in image acquisition/reconstruction, especially the time-of-flight and point spread function, have potential advantages in the image signal-to-noise ratio and spatial resolution. Modern detector materials and devices (including lutetium oxyorthosilicate, cadmium zinc tellurium, and silicon photomultiplier) as well as modern nuclear medicine imaging systems (including positron emission tomography [PET]/computerized tomography [CT], whole-body PET, PET/magnetic resonance [MR], and digital PET) enable not only high-quality digital image acquisition, but also subsequent image processing, including image reconstruction and post-reconstruction methods. Moreover, theranostics in nuclear medicine extend the usefulness of nuclear medicine physics far more than quantitative image-based diagnosis, playing a key role in personalized/precision medicine by raising the importance of internal radiation dosimetry in nuclear medicine. Now that deep-learning-based image processing can be incorporated in nuclear medicine image acquisition/processing, the aforementioned fields of nuclear medicine physics face the new era of Industry 4.0. Ongoing technological developments in nuclear medicine physics are leading to enhanced image quality and decreased radiation exposure as well as quantitative and personalized healthcare.

Performance evaluation of an adjustable gantry PET (AGPET) for small animal PET imaging

  • Song, Hankyeol;Kang, In Soo;Kim, Kyu Bom;Park, Chanwoo;Baek, Min Kyu;Lee, Seongyeon;Chung, Yong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2646-2651
    • /
    • 2021
  • A rectangular-shaped PET system with an adjustable gantry (AGPET) has been developed for imaging small animals. The AGPET system employs a new depth of interaction (DOI) method using a depth dependent reflector patterns and a new digital time pickoff method based on the pulse reconstruction method. To evaluate the performance of the AGPET, timing resolution, intrinsic spatial resolution and point source images were acquired. The timing resolution and intrinsic spatial resolution were measured using two detector modules and Na-22 gamma source. The PET images were acquired in two field of view (FOV) sizes, 30 mm and 90 mm, to demonstrate the characteristic of the AGPET. As a result of in the experiment results, the timing resolution was 0.9 ns using the pulse reconstruction method based on the bi-exponential model. The intrinsic spatial resolution was an average of 1.7 mm and the spatial resolution of PET images after DOI correction was 2.08 mm and 2.25 mm at the centers of 30 mm and 90 mm FOV, respectively. The results show that the proposed AGPET system provided higher sensitivity and resolution for small animal imaging.