• 제목/요약/키워드: digital human simulation

검색결과 124건 처리시간 0.02초

온톨로지 기반 디지털 휴먼모델의 작업 적응성 제고 방안 연구 (Research on Ontology-based Task Adaptability Improvement for Digital Human Model)

  • 강수호;손미애
    • 한국CDE학회논문집
    • /
    • 제17권2호
    • /
    • pp.79-90
    • /
    • 2012
  • In digital virtual manufacturing simulation, Digital Human widely used to optimal workplace design, enhancing worker safety in the workplace, and improving product quality. However, the case of ergonomics simulation solutions to support digital human modeling, Optimal DHM (Digital Human Model) data needed to develop and perform DHM will collect information related to the production process. So simulation developer has burden of collecting information. In this study, to overcome the limitations of existing solutions, we proposed the ADAGIO(Automated Digital humAn model development for General assembly usIng Ontology) framework. The ADAGIO framework was developed for DHM ontology to support optimal deployment of digital virtual environment and in order to ensure consistency of simulation components that are required for simulation modeling was made of a library.

여러 대의 키넥트 뎁스 카메라를 이용한 인간공학 시뮬레이션 모델링 자동화에 관한 연구 (A Study on Modeling Automation of Human Engineering Simulation Using Multi Kinect Depth Cameras)

  • 전찬모;이주연;노상도
    • 한국CDE학회논문집
    • /
    • 제21권1호
    • /
    • pp.9-19
    • /
    • 2016
  • Applying human engineering simulation to analyzing work capability and movements of operators during manufacturing is highly demanded. However, difficulty in modeling digital human required for simulation makes engineers to be reluctant to utilize human simulation for their tasks. This paper addresses such problem on human engineering simulation by developing the technology to automatize human modeling with multiple Kinects at different depths. The Kinects enable us to acquire the movements of digital human which are essential data for implementing human engineering simulation. In this paper, we present a system for modeling automation of digital human. Especially, the system provides a way of generating the digital model of workers' movement and position using multiple Kinects which cannot be generated by single Kinect. Lastly, we verify the effects of the developed system in terms of modeling time and accuracy by applying the system to four different scenarios. In conclusion, the proposed system makes it possible to generate the digital human model easily and reduce costs and time for human engineering simulation.

Digital Human Simulation을 이용한 근골격계질환 예방에 관한 연구 -조선업을 대상으로- (A Study for Prevention of Musculoskeletal Disorders Using Digital Human Simulation in the Shipbuilding Industry)

  • 장성록
    • 한국안전학회지
    • /
    • 제22권3호
    • /
    • pp.81-87
    • /
    • 2007
  • In this study digital human models of ship construction tasks using modeling & simulation were constructed and human models' activities through human activity analysis were evaluated. Human Factors experts analyzed the actual workers' tasks using the same technique used in human activity analysis at the same time. The main objective of this study is to check a possibility of applying digital human modeling technique to ship construction tasks that are mostly non-standardized(not uniformed) whereas most applications of digital human modeling technique have been applied to standardized tasks. We evaluated postures of both real workers and digital humans by RULA. It turned out that the final scores of RULA evaluation on real workers are the same as the RULA scores for digital humans. However, there were differences of RULA detail scores between real workers and digital humans in the several processes related with the wrist twist and deviations. Those differences are considered to be resulted from the error in the on-site measuring worker's body dimension which could be reduced by accurate tools to correct data for body dimension and digital real drawings for facilities. The results showed possibility of application of digital human modeling and ergonomic analysis on informal work operations as well as formal operations in the shipbuilding industry.

3차원 휴먼 시뮬레이션을 이용한 선박생산공정의 근골격계질환 감소방안 연구 (A Study of Musculoskeletal Disorders Reduction Scheme in Shipbuilding Process Using 3D Human Simulation)

  • 민경철;김동준
    • 한국해양공학회지
    • /
    • 제22권5호
    • /
    • pp.119-125
    • /
    • 2008
  • Musculoskeletal disorders(MSDs) are one of the major issues in shipbuilding industry. Main risk factors of MSDs include manual handling of heavy weight, awkward posture, repetitive tasks, prolonged static muscle contraction, and so on. in this study, Using the three-dimensional digital human modeling and simulation method we made up a worker and work posture on a virtual environment. To verify this simulation we compared both traditional ergonomic analysis on a real worker and digital program analysis on a digital human. And this paper shows that it is possible to reduce the rate of MSDs in the shipbuilding industry because it means we can change poor posture mid surroundings into better ones.

Motion-capture-based walking simulation of digital human adapted to laser-scanned 3D as-is environments for accessibility evaluation

  • Maruyama, Tsubasa;Kanai, Satoshi;Date, Hiroaki;Tada, Mitsunori
    • Journal of Computational Design and Engineering
    • /
    • 제3권3호
    • /
    • pp.250-265
    • /
    • 2016
  • Owing to our rapidly aging society, accessibility evaluation to enhance the ease and safety of access to indoor and outdoor environments for the elderly and disabled is increasing in importance. Accessibility must be assessed not only from the general standard aspect but also in terms of physical and cognitive friendliness for users of different ages, genders, and abilities. Meanwhile, human behavior simulation has been progressing in the areas of crowd behavior analysis and emergency evacuation planning. However, in human behavior simulation, environment models represent only "as-planned" situations. In addition, a pedestrian model cannot generate the detailed articulated movements of various people of different ages and genders in the simulation. Therefore, the final goal of this research was to develop a virtual accessibility evaluation by combining realistic human behavior simulation using a digital human model (DHM) with "as-is" environment models. To achieve this goal, we developed an algorithm for generating human-like DHM walking motions, adapting its strides, turning angles, and footprints to laser-scanned 3D as-is environments including slopes and stairs. The DHM motion was generated based only on a motion-capture (MoCap) data for flat walking. Our implementation constructed as-is 3D environment models from laser-scanned point clouds of real environments and enabled a DHM to walk autonomously in various environment models. The difference in joint angles between the DHM and MoCap data was evaluated. Demonstrations of our environment modeling and walking simulation in indoor and outdoor environments including corridors, slopes, and stairs are illustrated in this study.

Examining Portraits in Digital Fashion Art Non-Fungible Tokens (NFTs) through Baudrillard's Simulation

  • Yoon Kyung Lee
    • 한국의류학회지
    • /
    • 제47권5호
    • /
    • pp.929-942
    • /
    • 2023
  • Web 3.0 enables people and machines to connect, evolve, share, and use knowledge on an unprecedented scale and in new ways, drastically improving our Internet experience. The metaverse is a collective, virtual shared space supporting all digital activities. Prompted by the rapid growth of digital art and digital fashion, this theoretical analysis explores using Jean Baudrillard's simulation concept to create unique digital art non-fungible tokens (NFTs), allowing them to express and communicate ideas like real-world art. Specifically, this study analyzes 120 digital fashion portraits of humans and animals and classifies them under three types of simulacra covering four stages of Baudrillard's simulation process. The result shows that NFT fashion artworks reflect the core features of a digital reality by connecting and transcending the boundaries of cultures, genders, and nationalities. However, in the final simulation stage (the fourth step), the simulacrum can only coexist in the virtual world as a hyperreal object (the Type III of simulacrum): an object more real than reality.

Digital Human Simulation을 활용한 방사성 폐기물 처리장 주제어실의 인체공학적 평가 (Ergonomic Evaluation of a Control Room Design of Radioactive Waste Facility using Digital Human Simulation)

  • 이백희;장윤;정기효;정일호;유희천
    • 대한인간공학회지
    • /
    • 제29권3호
    • /
    • pp.383-391
    • /
    • 2010
  • The present study evaluated a preliminary control room (CR) design of radioactive waste facility using the $JACK^{(R)}$ human simulation system. Four digital humanoids ($5^{th}$, $50^{th}$, $95^{th}$, and $99^{th}$ percentiles) were used in the ergonomic evaluation. The first three were selected to represent 90% of the target population (Korean males aged 20 to 50 years) and the last to reflect the secular trend of stature for next 20 years in South Korea. The preliminary CR design was assessed by checking its compliance to ergonomic guidelines specified in NUREG-0700 and conducting an in-depth ergonomic analysis with a digital prototype of the CR design and the digital humanoids in terms of postural comfort, reachability, visibility, and clearance. For identified design problems, proper design changes and their validities were examined using JACK. A revised CR design suggested in the present study would contribute to effective and safe operations of the CR as well as operators' health in the workplace.

인간 친화적 설계 시스템을 위한 디지털 인체 모델 구성 연구 (Digital Human Modeling for Human-centered CAD System)

  • 정문기;이건우;조현덕;김태우;;이상헌
    • 한국CDE학회논문집
    • /
    • 제12권6호
    • /
    • pp.429-440
    • /
    • 2007
  • The purpose of this research is to develop the Human-centered CAD system in which human factors can be considered during the design stage. For this system there are several issues to research, like the digital human modeling technology, the definition of interactions between human and product, the simulation of human motion when using the product, and the bio-mechanical analysis of human, etc. This paper introduces how to construct the kinematical structure of the digital human model. For our digital human model H-ANIM, the international specification of humanoid animation is referenced. And we added the skeleton geometry and the skin surfaces to our model. And it can manipulate its joints by forward kinematics. Also the IKAN inverse kinematics algorithm is adopted to support the posture prediction of the digital human model in the product environment. All of these ideas are implemented using CAD API so that we can apply these functions to the current commercial CAD systems. In this manner, the human factor issues can be effectively taken into account at the early design phase and the costs of bio-mechanical evaluation will be significantly reduced.

Saccade 안구운동계의 시뮬레이션 (A new approach for the saccadic eye movement system simulation)

  • 박상희;남문현
    • 전기의세계
    • /
    • 제26권1호
    • /
    • pp.87-90
    • /
    • 1977
  • Various simulation techniques were developed in the modeling of biological system during the last decades. Mostly analog and hybrid simulation techniques have been used. The authors chose the Digital Analog Simulation (DAS) technique by using the MIMIC language to simulate the saccadic eye movement system performances on the digital computer. There have been various models presented by many investigators after Young & Stark's sampled-data model. The eye movement model chosen by the authors is Robinson's model III which shows the parallel information processing characteristics clearly to the double-step input stimuli. In the process of simulation, the parameter and constants used were based on the neurophysiological data of the human and animals. The analog model blocks were converted to the corresponding MIMIC block diagrams and programmed into the MIMIC statements. The program was run on the CDC Cyber 72-14 computer. The essential input stimulus was double-step of 5 and 10 degrees, and target durations chosen were 50,100 and 150 msec. The results obtained by the DAS technqiue were in good agreement with analog simulation carried out by other investigators as well as with the experimental human saccadic eye movement responses to double-step target movements.

  • PDF

Digital Human Model Simulation을 위한 RAMSIS 추정 운전자세의 정합성 평가 및 개선 (Evaluation of Predicted Driving Postures in RAMSIS Digital Human Model Simulation)

  • 박장운;정기효;장준호;권정웅;유희천
    • 산업공학
    • /
    • 제23권2호
    • /
    • pp.100-107
    • /
    • 2010
  • For proper ergonomic evaluation using a digital human model simulation (DHMS) system such as $RAMSIS^{(R)}$, the postures of humanoids for designated tasks need to be predicted accurately. The present study (1) evaluated the accuracy of driving postures of humanoids predicted by RAMSIS, (2) proposed a method to improve its accuracy, and (3) examined the effectiveness of the proposed method. The driving postures of 12 participants in a seating buck were measured by a motion capture system and compared with their corresponding postures predicted by RAMSIS. Significant discrepancies ($8.7^{\circ}$ to $74.9^{\circ}$) between predicted and measured postures were observed for different body parts and driving tasks. Two methods (constraints addition and user-defined posture) were proposed and their effects on posture estimation accuracy were examined. Of the two proposed methods, the user-defined posture method was found preferred, reducing posture estimation errors by 11.5% to 84.9%. Both the posture prediction accuracy assessment protocol and user-defined posture method would be of use for practitioners to improve the accuracy of predicted postures of humanoids in virtual environments.