• Title/Summary/Keyword: digital elevation models

Search Result 155, Processing Time 0.028 seconds

Development of Optimized Flow Apportioning Algorithm Using Natural Stream Morphology (자연하천 형상을 이용한 최적 흐름분배 알고리즘의 개발)

  • Kim, Sang-Hyun;Lee, Hak-Su;Kang, Chang-Yong;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.4 s.129
    • /
    • pp.345-358
    • /
    • 2002
  • The flow apportioning algorithms with digital elevation models have been developed to reflect reasonable flow divergence properties but they showed several defects related to the connectivity of channel cells, various divergence features along to local topography and channel cells' size etc. Topographic data used by existing flow apportioning algorithms are flow accumulation area and local slope. However, the size and location of channel cells which play the dominant role in the flow pathway were not properly considered. Therefore, a new flow apportioning algorithm considering various flow divergence characteristics in the complicate terrain is proposed. The GA optimization scheme is used to represent the location and scale of the channel pixel. Improved result can be obtained by using both a new flow apportioning algorithm and optimization.

SAR Clutter Image Generation Based on Measured Speckles and Textures (지표면 별 영상잡음과 영상질감을 이용한 SAR 클러터 영상 생성)

  • Kwon, Soon-Gu;Oh, Yi-Sok
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.375-381
    • /
    • 2009
  • In this paper, synthetic aperture radar (SAR) clutter images are simulated based on the extensive analyses for radar backscatter characteristics of various earth surfaces, and the simulated images are compared with measured SAR images. At first, the surface parameters including soil moisture content and surface roughness parameters and other parameters for vegetation canopies are measured for various surfaces. The backscattering coefficients for the surfaces are computed using theoretical and empirical models for surface scattering and the radiative transfer for vegetation-canopy scattering. Then, the digital elevation map (DEM) and land cover map (LCM) are used for the SAR image generation. The SAR impulse response (correlation function) is also employed to simulated reliable SAR images. Finally, the appropriate speckle and texture parameters for various earth surfaces are used for generating the SAR clutter images.

Thematic and geometric analysis of Bangpo beach based on UAV Remote Sensing (무인항공기반 태안반도 방포해빈의 지형분석)

  • Bae, Sungji;Yu, Jaehyung;Jeong, Yong-Sik;Yang, Dongyoon;Han, Min
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.1
    • /
    • pp.117-128
    • /
    • 2016
  • High resolution aerial photographs and digital elevation models for Bangpo beach using UAV were generated in this study to analyze the thematic and geometric characteristics of coastal features. Based on 728 aerial images acquired on September 10, 2016 by the UAV, a image mosaic at 2.2 cm spatial resolution and a digital elevation model at 4.4 cm spatial resolution were developed. This study found out that Bangpo beach consisted of intertidal zone and supratidal zone. The intertidal zone can be subdivided into lower part and upper part with distinctive geomorphological characteristics. While the lower part included sand bars and ripple marks along the coastline, the cusps and sand dunes were the major coastal features of the upper part. Part of the intertidal zone was occupied by shore platform with average slope of 0.9 degree containing various sizes of gravels. The supratidal zone slanted toward ocean with berms on the surface with an interval of 15 m. These coastal features indicated the flow intensity towards to the land and tidal effect. It validated that the UAV application in coastal research was very effective analyzing to examine coastal processes.

Extracting Topographic Information from SPOT-5 HRG Stereo Images (SPOT-5 HRG 스테레오 영상으로부터 지형정보 추출)

  • Lee, Jin-Duk;Lee, Seong-Sun;Jeong, Tae-Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.4 s.38
    • /
    • pp.61-70
    • /
    • 2006
  • This paper presents photogrammetric processing to generate digital elevation models using SPOT-5 HRG stereo images and deals with the accuracy potential of HRG (High Resolution Geometry) supermode imagery for DEM generation. After bundle adjustment was preformed for sensor modelling, digital surface models were generated through the procedures of Epipolar image resampling and image matching. The DEM extracted from HRG imagery was compared along several test sections with the the refernce DEM which was obtained from the digital topographic maps of a scale of 1 to 5000. The ratio of the zone with DEM errors less than 5m to the whole zone was 53.8%, and about 2.5m RMSE was showed when assuming that the zones larger than 5m were affected by clouds, water bodies and buildings and excluding those zones from accuracy evaluation. In addition, the three-dimensional bird's eye view model and 3D building model were producted based on the DSM which was extracted from SPOT-5 HRG data.

  • PDF

Applications of LiDAR in Cadastral Surveying (지적측량에 라이다 측량기술의 활용방안)

  • Kang, Joon-Mook;Min, Kwan-Sik;Wie, Gwang-Jae;Kim, Jae-Myoung
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.443-446
    • /
    • 2007
  • The major purpose of the present study is to gauge the general applicability of cadastral surveying and LiDAR surveying. LiDAR survey is the method which obtains Geospatial information of the terrain. We will get a most topographic models at Digital Elevation Model(DEM) using LiDAR survey data. Also, we will consider both the surface parcel partition and volume parcel as a part of Geospatial relationship model. This study will focus on enhancing the efficiency and analysis of continual cadastral map and LiDAR DEM. I would like to close by proposing that LiDAR surveying will contribute in cadastral surveying.

  • PDF

APPLICATION OF DEMs OF LIDAR DATA IN HYDROLOGY MODELING

  • Son Min-Ho;Lee Woo-Kyun;Kwak Doo-Ahn
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.519-521
    • /
    • 2005
  • In recent years, LiDAR(Light Detection and Ranging) data has been widely used to prepare digital elevation models(DEMs) with the high spatial resolution of centi-meters. This paper investigated possible applications of LiDAR-derived DEMs in surface hydrology modeling, such as characterizing flow direction, identifying sub-basins in a watershed, and calculating variables like upstream contribution area. The results were compared to the results of the DEMs from conventional topographic maps.

  • PDF

Uncertainty Analysis of Flash-flood Prediction using Remote Sensing and a Geographic Information System based on GcIUH in the Yeongdeok Basin, Korea

  • Choi, Hyun;Chung, Yong-Hyun;Yoon, Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.884-887
    • /
    • 2006
  • This paper focuses on minimizing flood damage in the Yeongdeok basin of South Korea by establishing a flood prediction model based on a geographic information system (GIS), remote sensing, and geomorphoclimatic instantaneous unit hydrograph (GcIUH) techniques. The GIS database for flash flood prediction was created using data from digital elevation models (DEMs), soil maps, and Landsat satellite imagery. Flood prediction was based on the peak discharge calculated at the sub-basin scale using hydrogeomorphologic techniques and the threshold runoff value. Using the developed flash flood prediction model, rainfall conditions with the potential to cause flooding were determined based on the cumulative rainfall for 20 minutes, considering rainfall duration, peak discharge, and flooding in the Yeongdeok basin.

  • PDF

A Spatial Planning Model for Supporting Facilities Allocation and Visual Evaluation in Improvement of Rural Villages (농촌마을개발의 시설배치 및 시각적 평가 지원을 위 한 공간계획 모형)

  • 김대식;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.6
    • /
    • pp.71-82
    • /
    • 2002
  • The purpose of this study is to develop a 3 dimensional spatial planning model (3DSPLAM) for facilities allocation and visual evaluation in improvement planning of rural village. For the model development, this study developed both planning layers and a modelling process for spatial planning of rural villages. The 3DSPLAM generates road networks and village facilities location automatically from built area plan map and digital elevation model generated by geographic information system. The model also simulates 3-dimensional villagescape for visual presentation of the planned results. The 3DSPLAM could be conveniently used for automatic allocation of roads, easy partition of land lots and reasonable locating of facilities. The planned results could be also presented in the stereoscopic models with varied viewing positions and angles.

Geometric Corrections of Inaccessible Area Imagery by Employing a Correlative Method

  • Lee, Hong-Shik;Park, Jun-Ku;Lim, Sam-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.5 s.23
    • /
    • pp.67-74
    • /
    • 2002
  • The geometriccorrection of a satellite imagery is performed by making a systematic correction with satellite ephemerides and attitude angles followed by employing the Ground Control Points (GCSs) or Digital Elevation Models (DEMs). In a remote area or an inaccessible area, however, GCPs are unavailable to be surveyed and thus they can be obtained only by reading maps, which are not accurate in reality. In this study, we performed the systematic correction process to the inaccessible area and the precise geometric correction process to the adjacent accessible area by using GCPs. Then we analyzed the correlation between the two geo-referenced Korea Multiurpose Satellite (KOMPSAT-1 EOC) images. A new geometrical correction for the inaccessible area imagery is achieved by applying the correlation to the inaccessibleimagery. By employing this new method, the accuracy of the inaccessible area imagery is significantly improved absolutely and relatively.

  • PDF

Segmentation and Classification of Lidar data

  • Tseng, Yi-Hsing;Wang, Miao
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.153-155
    • /
    • 2003
  • Laser scanning has become a viable technique for the collection of a large amount of accurate 3D point data densely distributed on the scanned object surface. The inherent 3D nature of the sub-randomly distributed point cloud provides abundant spatial information. To explore valuable spatial information from laser scanned data becomes an active research topic, for instance extracting digital elevation model, building models, and vegetation volumes. The sub-randomly distributed point cloud should be segmented and classified before the extraction of spatial information. This paper investigates some exist segmentation methods, and then proposes an octree-based split-and-merge segmentation method to divide lidar data into clusters belonging to 3D planes. Therefore, the classification of lidar data can be performed based on the derived attributes of extracted 3D planes. The test results of both ground and airborne lidar data show the potential of applying this method to extract spatial features from lidar data.

  • PDF