• Title/Summary/Keyword: digital elevation models

Search Result 155, Processing Time 0.02 seconds

Analysis and estimation of species distribution of Mythimna seperata and Cnaphalocrocis medinalis with land-cover data under climate change scenario using MaxEnt (MaxEnt를 활용한 기후변화와 토지 피복 변화에 따른 멸강나방 및 혹명나방의 한국 내 분포 변화 분석과 예측)

  • Taechul Park;Hojung Jang;SoEun Eom;Kimoon Son;Jung-Joon Park
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.2
    • /
    • pp.214-223
    • /
    • 2022
  • Among migratory insect pests, Mythimna seperata and Cnaphalocrocis medinalis are invasive pests introduced into South Korea through westerlies from southern China. M. seperata and C. medinalis are insect pests that use rice as a host. They injure rice leaves and inhibit rice growth. To understand the distribution of M. seperata and C. medinalis, it is important to understand environmental factors such as temperature and humidity of their habitat. This study predicted current and future habitat suitability models for understanding the distribution of M. seperata and C. medinalis. Occurrence data, SSPs (Shared Socio-economic Pathways) scenario, and RCP (Representative Concentration Pathway) were applied to MaxEnt (Maximum Entropy), a machine learning model among SDM (Species Distribution Model). As a result, M. seperata and C. medinalis are aggregated on the west and south coasts where they have a host after migration from China. As a result of MaxEnt analysis, the contribution was high in the order of Land-cover data and DEM (Digital Elevation Model). In bioclimatic variables, BIO_4 (Temperature seasonality) was high in M. seperata and BIO_2 (Mean Diurnal Range) was found in C. medinalis. The habitat suitability model predicted that M. seperata and C. medinalis could inhabit most rice paddies.

Solution Approaches to Multiple Viewpoint Problems: Comparative Analysis using Topographic Features (다중가시점 문제해결을 위한 접근방법: 지형요소를 이용한 비교 분석을 중심으로)

  • Kim, Young-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.3
    • /
    • pp.84-95
    • /
    • 2005
  • This paper presents solution heuristics to solving optimal multiple-viewpoint location problems that are based on topographic features. The visibility problem is to maximise the viewshed area for a set of viewpoints on digital elevation models (DEM). For this analysis, five areas are selected, and fundamental topographic features (peak, pass, and pit) are extracted from the DEMs of the study areas. To solve the visibility problem, at first, solution approaches based on the characteristics of the topographic features are explored, and then, a benchmark test is undertaken that solution performances of the solution methods, such as computing times, and visible area sizes, are compared with the performances of traditional spatial heuristics. The feasibility of the solution methods, then, are discussed with the benchmark test results. From the analysis, this paper can conclude that fundamental topographic features based solution methods suggest a new sight of visibility analysis approach which did not discuss in traditional algorithmic approaches. Finally, further research avenues are suggested such as exploring more sophisticated selection process of topographic features related to visibility analysis, exploiting systematic methods to extract topographic features, and robust spatial analytical techniques and optimization techniques that enable to use the topographic features effectively.

  • PDF

Effect of DEM Resolution in USLE LS Factor (USLE LS 인자 구축시 DEM 해상도가 미치는 영향)

  • Koo, Ja-Young;Yoon, Dae-Soon;Lee, Dong Jun;Han, Jeong Ho;Jung, Younghun;Yang, Jae E;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.89-97
    • /
    • 2016
  • Digital Elevation Models (DEMs) have been used to represent the effects of topography on soil erosion. A DEM of 30 m resolution is frequently used in hydrology and soil erosion studies because the National Water Management Information System (WAMIS) provides a 30 m resolution DEM at national scale on its web site. However, the Ministry of Environment recommends the use of a DEM with 10 m resolution for evaluation of soil erosion due to the fact that soil erosion estimation is to some degree affected by the spatial resolution of DEM. In this regard, a DEM with 5 m resolution was resampled for 10 × 10 m, 20 × 20 m, 30 × 30 m, 50 × 50 m, 70 × 70 m, and 100 × 100 m resolutions, respectively. USLE LS factors and soil erosion values were evaluated using these datasets. Use of a DEM with at least 30 m resolution provided reasonable LS factors and soil erosion values at a watershed.

Analysis of Land Uses in the Nakdong River Floodplain Using RapidEye Imagery and LiDAR DEM (RapidEye 영상과 LiDAR DEM을 이용한 낙동강 범람원 내 토지 이용 현황 분석)

  • Choung, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.189-199
    • /
    • 2014
  • Floodplain is a flat plain between levees and rivers. This paper suggests a methodology for analyzing the land uses in the Nakdong River floodplain using the RapidEye imagery and the given LiDAR(LIght Detection And Ranging) DEM(Digital Elevation Models). First, the levee boundaries are generated using the LiDAR DEM, and the area of the floodplain is extracted from the given RapidEye imagery. The land uses in the floodplain are identified in the extracted RapidEye imagery by the ISODATA(Iterative Self-Organizing Data Analysis Technique Analysis) clustering. The overall accuracy of the identified land uses by the ISODATA clustering is 91%. Analysis of the identified land uses in the floodplain is implemented by counting the number of the pixels constituting the land cover clusters. The results of this research shows that the area of the river occupies 46%, the area of the bare soil occupies 36%, the area of the marsh occupies 11%, and the area of the grass occupies 7% in the identified floodplain.

Comparison Analysis of Methods for Smoothing the Stream Profiles Extracted from Digital Elevation Models and Suggestion of a New Smoothing Method (DEM에서 추출한 하천종단곡선의 평활화 방법 고찰 및 새로운 방법의 제안)

  • Byun, Jongmin;Seong, Yeong Bae
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.3
    • /
    • pp.339-356
    • /
    • 2014
  • Easy access to DEMs and the development of technology treating DEMs make it easier to extract stream longitudinal profiles from DEMs than previously done. Since such profiles possess many problems such as artificial flats and steps, it should be required for them to be smoothed like natural profiles to estimate gradient values along those sections. However smoothing itself comes with much distortion of raw profile from original DEMs. There has been no research evaluating quantitatively the effects due to smoothing process. Here we attempt to quantify the effects of major smoothing methods on raw and real profiles, suggest a new method to overcome the limitations of them, and evaluate it. This study not only suggests a new smoothing method, but also provides a guideline for choosing a proper smoothing method.

  • PDF

Validation of DEM Derived from ERS Tandem Images Using GPS Techniques

  • Lee, In-Su;Chang, Hsing-Chung;Ge, Linlin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.1 s.31
    • /
    • pp.63-69
    • /
    • 2005
  • Interferometric Synthetic Aperture Radar(InSAR) is a rapidly evolving technique. Spectacular results obtained in various fields such as the monitoring of earthquakes, volcanoes, land subsidence and glacier dynamics, as well as in the construction of Digital Elevation Models(DEMs) of the Earth's surface and the classification of different land types have demonstrated its strength. As InSAR is a remote sensing technique, it has various sources of errors due to the satellite positions and attitude, atmosphere, and others. Therefore, it is important to validate its accuracy, especially for the DEM derived from Satellite SAR images. In this study, Real Time Kinematic(RTK) GPS and Kinematic GPS positioning were chosen as tools for the validation of InSAR derived DEM. The results showed that Kinematic GPS positioning had greater coverage of test area in terms of the number of measurements than RTK GPS. But tracking the satellites near and/or under trees md transmitting data between reference and rover receivers are still pending tasks in GPS techniques.

  • PDF

Application of Topographic Index Calculation Algorithm considering Topographic Properties (지형적 특성을 고려한 지형지수 산정 알고리즘에 관한 연구)

  • Lee, Ji-Yeong;Kim, Sang-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.3
    • /
    • pp.279-288
    • /
    • 2000
  • The impact of land slope to the degree of flow divergence was considered employing distributional applications of slope exponents in the now directlOn algoriUnns. Lmear, exponential and ]X)wer law of distributional functIons were employed to address the variation of slope exponents m a terrain analysis. Dongok subwatershed at Wichun test watershed was selected as a study area. Digital Elevation Models of 20m, 30m, 40m and 50m grid size were made to perfonn the analysis. Various calcualtion methodologies of topographic index and the impact of grid sizes were investigated in terms of statistical and spatial aspects. DIstributional applications of slope e.xponents made it possible to represent the flow divergence and convergence about the ten-ain characteristics. The Monte~Carlo method was used to simulate six runoff events to check the impact of topographic factor in the runoff simulation.

  • PDF

The Case Study : The Efficiency of Using UAV and 3D-model for Mine Reclamation Work Monitoring (무인항공기와 3차원 지표모델의 광해방지사업 모니터링에 대한 효율성 고찰)

  • Kim, Seyoung;Yu, Jaehyung;Shin, Ji Hye;Lee, Gilljae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • This study investigated the effectiveness of Unmanned Aerial Vehicle (UAV) and 3D modeling on mine reclamation monitoring. The high spatial resolution of 3.8 cm ortho-mosaic image and Digital Elevation Model (DEM) are constructed based on UAV air survey. The ortho-mosaic image effectively shows mine reclamation activities and recognize objects and topological changes in the image. The comparative analysis of 3D models between UAV based DEM and report based DEM reveals that total amount of $268,672m^3$ additional dumping of contaminated soil is equivalent to 710,000 ton. It concludes that a UAV based survey enables high accuracy spatial information extraction for mine reclamation activities with high efficiency. It is expected that UAV survey will be very effectively used for preliminary data acquisition and project monitoring for mine reclamation activities.

GIS- Based Predictive Model for Measure of Environmental Pollutant (GIS를 이용한 환경오염의 예측 모델)

  • Lee, Ja-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.14 no.2
    • /
    • pp.114-125
    • /
    • 2008
  • Colored dissolved organic matter(CDOM) is an important component of ocean color that can be used as an invaluable tool in water quality and ocean color studies. With the largest source of coastal CDOM appearing to be from freshwater discharge into the ocean, coastal predictive models will do much to refine our knowledge about major processes that control CDOM distributions in coastal waters and provide a better insight into the global carbon cycle. This study aims at developing a GIS-based watershed-scale predictive model of CDOM distributions in Neponset river watersheds that can be used to appraise our understanding of CDOM sources and distributions in coastal waters and predict the response of CDOM concentration to changes in land use patterns. Weighting factors are developed for CDOM freshwater sources after extensive groundtruthing from various landuse types in the watershed. This model makes use of a publicly available DEM(Digital elevation model) as the base data for analysis. Stream networks, discharge, and land use data are used from public repositories while sub- watershed delineation, pour-points, and land use parcels are generated using Spatial Analysis of ArcGIS 9.2 to estimate the CDOM loading from various sources to the lower tributaries of rivers. The Neponset Watershed in eastern Massachusetts is selected as the site for development of the model.

  • PDF

Tidal Flat DEM Generation and Seawater Changes Estimation at Hampyeong Bay Using Drone Images (드론을 이용한 함평만 갯벌 DEM 제작과 해수 변화량 파악)

  • Lee, Hyoseong;Kim, Duk-jin;Oh, Jaehong;Shin, Jungil;Jung, Jaesung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.325-331
    • /
    • 2017
  • In this study, digital elevation models(DEM) of tidal flat, according to different times, was produced by means of the Drone and commercial software in order to measure seawater change during high tide at water-channel in the Hampyung Bay. To correct the produced DEMs of the tidal flat where is inaccessible to collect control points, the DEM matching method was applied by using the reference DEM, that is previously obtained, instead of the survey. After the ortho-image was made from the corrected DEM, the land cover classified image was produced. The changes of seawater amount according to the times were analyzed by using the classified images and DEMs. As a result, it was confirmed that the amount of water rapidly increased as the time passed during high tide.