• Title/Summary/Keyword: digital appliance

Search Result 257, Processing Time 0.04 seconds

Comparison study of effects of magnetic therapy at Hap-Kok(LI4 ) on the thermal change of Chun-Choo(ST25) in man (합곡(合谷)(L14)의 자침(刺鍼)과 자석외첩(磁石外貼)이 천추(天樞)(S25) 부분(部分) 영역(領域)의 온도변화(溫度變化)에 미치는 영향(影響) 비교(比較))

  • Baek Tae-Ho;Park Ryoung-Jun
    • Journal of Korean Medical Ki-Gong Academy
    • /
    • v.5 no.1
    • /
    • pp.22-39
    • /
    • 2001
  • This study is designed to compare the effect of a needle with the magnet on body. We took the skin temperature of the belly with digital infrared thermographic imaging while we sticked needle and apply magnets on L14. We made experiments on 40 healthy male volunteers for one month. We classified control group not acupuncture or magnet adhering(CON). acupuncture group on left and right L14(LA). and the permanent magnet group adhering to left and right(LM). And LM is divided into S-polar permanent magnet group(LMS) and N-polar permanent magnet group adhering to left and right L14(LMN). When we observed that temperature changed with time, the skin temperature of th belly in CON descended significantly but LM, LMS and LMN is not changed significantly. As mentioned above. we observed that the needles on L14 affected the change of temperature on the belly, and conjectured that the appliance of magnets had the same results. If the mechanism depends on the meridian of body and energy. we suppose that the appliance of magnets and needles has same effects.

Long-term stability of maxillary and mandibular arch dimensions when using rapid palatal expansion and edgewise mechanotherapy in growing patients

  • Kim, Ki Beom;Doyle, Renee E.;Araujo, Eustaquio A.;Behrents, Rolf G.;Oliver, Donald R.;Thiesen, Guilherme
    • The korean journal of orthodontics
    • /
    • v.49 no.2
    • /
    • pp.89-96
    • /
    • 2019
  • Objective: The purpose of this study was to assess the long-term stability of rapid palatal expansion (RPE) followed by full fixed edgewise appliances. Methods: This study included 67 patients treated using Haas-type RPE and non-extraction edgewise appliance therapy at a single orthodontic practice. Serial dental casts were obtained at three different time points: pretreatment ($T_1$), after expansion and fixed appliance therapy ($T_2$), and at long-term recall ($T_3$). The mean duration of the $T_1-T_2$ and $T_2-T_3$ periods was $4.8{\pm}3.5years$ and $11.0{\pm}5.4years$, respectively. The dental casts were digitized, and the computed measurements were compared with untreated reference data. Results: The majority of treatment-related increases in the maxillary and mandibular arch measurements were statistically significant (p < 0.05) and greater than expected for the untreated controls. Although many measurements decreased postretention ($T_2-T_3$), the net gains persisted for all of the measurements evaluated. Conclusions: The use of RPE therapy followed by full fixed edgewise appliances is an effective method for increasing maxillary and mandibular arch width dimensions in growing patients.

Performance Evaluation of Nano-Lubricants at Thrust Slide-Bearing of Scroll Compressor (나노 윤활유를 이용한 스크롤 압축기 스러스트 베어링의 윤활특성 평가)

  • Cho, Han-Jong;Cho, Yong-Il;Cho, Sang-Won;Lee, Jae-Keun;Park, Min-Chan;Kim, Dae-Jin;Lee, Kwang-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.121-125
    • /
    • 2012
  • This paper presents the friction and anti-wear characteristics of nano-oil with a mixture of a refrigerant oil and carbon nano-particles in the thrust slide-bearing of scroll compressors. Frictional loss in the thrust slide-bearing occupies a large part of total mechanical loss in scroll compressors. The characteristics of friction and anti-wear using nano-oil is evaluated using the thrust bearing experimental apparatus for measuring friction surface temperature and the coefficient of friction at the thrust slide-bearing as a function of normal loads up to 4,000 N and rotating speed up to 3,200 rpm. It is found that the coefficient of friction increases with decreasing rotating speed and normal force. The friction coefficient of carbon nano-oil is 0.023, while that of pure oil is 0.03 under the conditions of refrigerant gas R-22 at the pressure of 5 bars. It is believed that carbon nano-particles can be coated on the friction surfaces and the interaction of nano-particles between surfaces can be improved the lubrication in the friction surfaces. Carbon nano-oil enhances the characteristics of the anti-wear and friction at the thrust slide-bearing of scroll compressors.

Simulation Experiment of PEMFC Using Insulation Vessel at Low Temperature Region (저온영역에서 단열용기를 이용한 연료전지 모의 실험)

  • Jo, In-Su;Kwon, Oh-Jung;Kim, Yu;Hyun, Deok-Su;Park, Chang-Kwon;Oh, Byeong-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.5
    • /
    • pp.403-409
    • /
    • 2008
  • Polymer electrolyte membrane fuel cell (PEMFC) is very interesting power source due to high power density, simple construction and operation at low temperature. But it has problems such as high cost, improvement of performance, effect of temperature and initial start at low temperature. These problems can be approached to be solved by using experiment and mathematical method which are general principles for analysis and optimization of control system for heat and hydrogen detecting management. In this paper, insulation vessel and control system for stable operation of fuel cell at low temperature were developed for experiment. The constant temperature capability and the heating time at sub-zero temperatures with insulation control system were studied by using a heating bar of 60W class. PEMFC stack which was made by 4 cells with $50\;mc^2$ active area in each cell is a thermal source. Times which take to reach constant temperature by the state of insulation vacuum were measured at variable environment temperatures. The test was performed at two conditions: heating mode and cooling mode. Constant temperature capability was better at lower environment temperature and vacuum pressure. The results of this experiment could be used as basis data about stable operation of fuel cell stack in low temperature zone.

An Experimental Study on Individual Difference in Reaction to Mild Environment in Adult Males - On the Perspective of Sasang Constitution (온열 환경 반응에 대한 사상체질간 차이에 대한 실험적 연구)

  • Kim Seon-Ho;Lee Eun-Seon;Kim Ji-Eun;Park Kyung-Mo;Lee Ju-Youn;Choi Ho-Seon
    • The Journal of Korean Medicine
    • /
    • v.26 no.1 s.61
    • /
    • pp.123-133
    • /
    • 2005
  • Objective : We investigated the sasang constitutional difference of physiological and psychological response in various thermal environmental conditions. Methods: Among 210 volunteers, 30 healthy subjects were selected through the QSCC II (a questionnaire for constitutional discrimination) and the manual examination of a specialist in sasang constitution. Subjects consisted of 10 each Soyang(少陽), Soeum(少陰), and Taeum(太陽). Experimental environments were set by six different conditions to be $23^{\circ}C,\;50\%\;RH,\;0.lm/s;\;25^{\circ}C,\;25\%\;RH,\;0.lm/s;\;25^{\circ}C,\;50\%\;RH,\;0.lm/s;\;25^{\circ}C,\;50\%\;RH,\;0.4m/s;\;25^{\circ}C,\;75\%\;RH,\;0.1m/s;\;and\;27^{\circ}C,\;50\%\;RH,\;0.1m\s$ (respectively temperature, relative humidity, and wind velocity). Skin temperature, core temperature, heart rate variability (HRV), and galvanic skin response (GSR) were measured for each subject Additionally, subjects were asked about comfort through the questionnaire. Results: From the viewpoint of external temperature sensibility, in all experimental environments, generally the Taeum type feels hotter and the Soeum feels colder than other types. In relative comfort, Soeum types were most sensitive to wind velocity change. From the viewpoint of body temperature, Taeum type was lower and Soyang was higher than other types. The measurements of HRV and GSR showed no difference between the types. Conclusion : The four sasang constitution types showed different responses to various thermal environmental conditions. Accordingly, our research could provide basic data for building the optimal thermal conditions for individuals based on sasang constitution. Consequently, it will help to build a healthy environment for everyday life.

  • PDF

Study of the local heat transfer characteristic on the louver fin by using the expansion model (확대 모델을 이용한 루버 휜의 국부 열전달 특성변화에 관한 연구)

  • Kim, Jung-Kuk;Koyama, Shigeru;Kuwahara, Ken;Park, Byung-Duck;Kim, Dong-Hwi;Sa, Yong-Cheol
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.227-232
    • /
    • 2008
  • The present study was investigated the local heat transfer characteristics and temperature distribution on the louver fin by using the expansion model. Heat transfer rate, frost mass and temperature distribution of the louver fin under frosting condition were experimentally investigated. Local heat transfer rate and heat flux on the louver were analyzed by the conduction heat transfer between top and lower part of the louver. The experimental key parameter was brine inlet temperature(-5, -10, $-15^{\circ}C$). The heat transfer performance and frost mass at brine temperature of $-15^{\circ}C$ were increased by maximum 3 time than the brine temperature of $-5^{\circ}C$. At all experimental case, local heat transfer rate and heat flux of the louver were almost symmetry at the louver number of 6. Especially, local heat transfer rate and heat flux were maximum increased on the louver number of 4 and 8.

  • PDF

Experimental Study on the Performance Change of the Fin and Tube Type Heat Exchanger by the Frosting (착상에 의한 휜관형 열교환기의 성능변화에 관한 실험적 연구)

  • Kim, Jung-Kuk;Koyama, Shigeru;Kuwahara, Ken;Park, Byung-Duck;Kim, Dong-Hwi;Sa, Yong-Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.2
    • /
    • pp.79-86
    • /
    • 2009
  • The present study was investigates the effect of the parameters on the frost formation and heat transfer performance such as fin shape, air temperature and air velocity. Heat transfer rate and pressure drop by frost were experimentally investigated. Effect of the wet blub temperature and air velocity on the heat transfer performance has been also investigated. The heat transfer performance of the louver fin and tube type heat exchanger was higher by maximum of 0.85% than the corrugate fin type at the air temperature of $2.0/1.5^{\circ}C$. As the wet blub temperature of air were increased, the heat transfer rate, pressure drop and mass of frost of three test models were increased. Especially, the maximum heat transfer rate and maximum pressure drop were shown for the Type B louver fin heat exchanger. As an experimental result, the enhancement factor(EF) of louver fin and tube type heat exchanger was only $0.2{\sim}0.4$ due to the high pressure drop.