• Title/Summary/Keyword: digital UWB impulse generator

Search Result 9, Processing Time 0.019 seconds

A Design of Analog Front-End for Noncoherent UWB Communication System

  • Yong Moon Kwan-Ho;Choi Sungsoo;Oh Hui Myong;Kim Kwan-Ho;Lee Won Cheol;Shin Yoan
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.77-81
    • /
    • 2004
  • In this paper, we propose a analog front-end (AFE) for noncoherent On-Off Keying (OOK) Ultra Wide Band (UWB) system based on power detection. The proposed AFE are designed using 0.18 micron CMOS technology and verified by simulation using SPICE. The proposed AFE consist of Sample-and-Hold block, Analog-to-Digital converter, synchronizer, delayed clock generator and impulse generator. The time resolution of 1ns is obtained with 100MHz system clocks and the synchronized 10-bit digital outputs are delivered to the baseband. The impulse generator produces 1ns width pulse using digital CMOS gates. The simulation results show the feasibility of the proposed UWB AFE systems.

  • PDF

UWB impulse generator using gated ring oscillator (게이티드 링 발진기를 이용한 UWB 임펄스 생성기)

  • Jang, Junyoung;Kim, Taewook
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.721-727
    • /
    • 2021
  • This paper proposes a UWB (Ultar-wideband) impulse generator using the gated ring oscillator. The oscillator and PLL circuits which generate a several GHz LO signal for the conventional architecture are replaced with the gated ring oscillator. Therefore, the system complexity is decreased. The proposed architecture controls the duty of enable signal, which is used for the head switch of ring oscillator. The control of the duty enables to tun off the oscillator during the guard interval and stop wasting the power consumption. The pulse shaping method using the counter makes the small side lobe and preserves the bandwidth regardless of the change on the center frequency. Designed UWB impulse generator could change the center frequency from 6.0 GHz to 8.8 GHz with a digital bit control, while it preserves the bandwidth as about 1.5 GHz.

A 3~5 GHz Interferer Robust IR-UWB RF Transceiver for Data Communication and RTLS Applications (간섭 신호에 강인한 특성을 갖는 데이터 통신과 위치 인식 시스템을 위한 3~5 GHz 대역의 IR-UWB RF 송수신기)

  • Ha, Jong Ok;Park, Myung Chul;Jung, Seung Hwan;Eo, Yun Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.70-75
    • /
    • 2014
  • This paper presents a IR-UWB(Impulse Radio Ultra-Wide Band) transceiver circuit for data communication and real time location system. The UWB receiver is designed to OOK(On-Off Keying) modulation for energy detection. The UWB pulse generator is designed by digital logic. And the Gaussian filter is adopted to reject side lobe in transmitter. The measured sensitivity of the receiver is -65 dBm at 4 GHz with 1 Mbps PRF(Pulse Repetition Frequency). And the measured energy efficiency per pulse is 20.6 pJ/bit. The current consumption of the receiver and transmitter including DA is 27.5 mA and 25.5 mA, respectively, at 1.8 V supply.

A Noncoherent UWB Communication System for Low Power Applications

  • Yang, Suck-Chel;Park, Jung-Wan;Moon, Yong;Lee, Won-Cheol;Shin, Yo-An
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.3
    • /
    • pp.210-216
    • /
    • 2004
  • In this paper, we propose a noncoherent On-Off Keying (OOK) Ultra Wide Band (UWB) system based on power detection with noise power calibration for low power applications. The proposed UWB system achieves good bit error rate performance which is favorably comparable to that of the system using the ideal adaptive threshold, while maintaining simple receiver structure, In addition, low power Analog Front-End (AFE) blocks for the proposed noncoherent UWB transceiver are proposed and verified using CMOS technology. Simulation results on the pulse generator, delay time generator and 1-bit Analog-to-Digital (AID) converter show feasibility of the proposed UWB AFE system.

Implementation of Impulse Radar System in Time Domain within Laboratory Unit (시영역에서 임펄스 레이더 시스템의 실험적 구현)

  • Doojin Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.2
    • /
    • pp.93-98
    • /
    • 2024
  • This paper presents the method to extract the ultrawide-band (UWB) signal and proposes the simple impulse radar system for sensing real-based target within close-range area. The proposed impulse radar system consists of impulse generator, ultrawide-band antennas, function generator, and digital oscilloscope. It is verified by experiment that a differentiated Gaussian pulse is generated with 200ps of pulse width and corresponding spectrum from 0.3 to 4.7 GHz once a sinusoidal wave with 10MHz is excited. The Gaussian doublet is received by identical antennas and it is shown that the UWB pule width of 328ps and its spectrum is from 0.9 to 4.4 GHz. It is confirmed that the UWB pulse is extracted when the real-based targets such as circular target with 4cm radius and corner reflector are placed at the close-range area.

A Design of CMOS Transceiver for noncoherent UWB Communication system (비동기방식 UWB통신용 CMOS 아날로그 송수신단의 설계)

  • Park, Jung-Wan;Moon, Yong;Choi, Sung-Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.12
    • /
    • pp.71-78
    • /
    • 2005
  • In this paper, we propose a transceiver for noncoherent OOK(On-Off Keying) Ultra Wide Band system based on magnitude detection. The proposed transceiver are designed using 0.18 micron CMOS technology and verified by simulation using SPICE and measurement. The proposed transceiver consist of parallelizer, Analog-to-Digital converter, clock generator, PLL and impulse generator. The time resolution of 1ns is obtained with 125MHz system clocks and 8x parallelization is carried out. The synchronized eight outputs with 2-bit resolution are delivered to the baseband. Impulse generator produces 1ns width pulse using digital CMOS gates. The simulation results and measurement show the feasibility of the proposed transceiver for UWB communication system.

A 6.5 - 8.5 GHz CMOS UWB Transmitter Using Switched LC VCO

  • Eo, Yun Seong;Park, Myung Cheol;Ha, Min-Cheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.417-422
    • /
    • 2015
  • A 6.5 - 8.5 GHz CMOS UWB transmitter is implemented using $0.18{\mu}m$ CMOS technology. The transmitter is mainly composed of switched LC VCO and digital pulse generator (DPG). Using RF switch and DPG, the uniform power and sidelobe rejection are achieved irrespective of the carrier frequency. The measured UWB carrier frequency range is 7 ~ 8 GHz and the pulse width is tunable from 1 to 2 ns. The measured energy efficiency per pulse is 2.1 % and the power consumption is 0.6 mW at 10 Mbps without the buffer amplifier. The chip core size is $0.72mm^2$.

Digital Low-Power High-Band UWB Pulse Generator in 130 nm CMOS Process (130 nm CMOS 공정을 이용한 UWB High-Band용 저전력 디지털 펄스 발생기)

  • Jung, Chang-Uk;Yoo, Hyun-Jin;Eo, Yun-Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.784-790
    • /
    • 2012
  • In this paper, an all-digital CMOS ultra-wideband(UWB) pulse generator for high band(6~10 GHz) frequency range is presented. The pulse generator is designed and implemented with extremely low power and low complexity. It is designed to meet the FCC spectral mask requirement by using Gaussian pulse shaping circuit and control the center frequency by using CMOS delay line with shunt capacitor. Measurement results show that the center frequency can be controlled from 4.5 GHz to 7.5 GHz and pulse width is 1.5 ns and pulse amplitude is 310 mV peak to peak at 10 MHz pulse repetition frequency(PRF). The circuit is implemented in 0.13 um CMOS process with a core area of only $182{\times}65um^2$ and dissipates the average power of 11.4 mW at an output buffer with 1.5-V supply voltage. However, the core consumes only 0.26 mW except for output buffer.

A 3 ~ 5 GHz CMOS UWB Radar Chip for Surveillance and Biometric Applications

  • Lee, Seung-Jun;Ha, Jong-Ok;Jung, Seung-Hwan;Yoo, Hyun-Jin;Chun, Young-Hoon;Kim, Wan-Sik;Lee, Noh-Bok;Eo, Yun-Seong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.238-246
    • /
    • 2011
  • A 3-5 GHz UWB radar chip in 0.13 ${\mu}m$ CMOS process is presented in this paper. The UWB radar transceiver for surveillance and biometric applications adopts the equivalent time sampling architecture and 4-channel time interleaved samplers to relax the impractical sampling frequency and enhance the overall scanning time. The RF front end (RFFE) includes the wideband LNA and 4-way RF power splitter, and the analog signal processing part consists of the high speed track & hold (T&H) / sample & hold (S&H) and integrator. The interleaved timing clocks are generated using a delay locked loop. The UWB transmitter employs the digitally synthesized topology. The measured NF of RFFE is 9.5 dB in 3-5 GHz. And DLL timing resolution is 50 ps. The measured spectrum of UWB transmitter shows the center frequency within 3-5 GHz satisfying the FCC spectrum mask. The power consumption of receiver and transmitter are 106.5 mW and 57 mW at 1.5 V supply, respectively.