• Title/Summary/Keyword: digital PID controller

Search Result 151, Processing Time 0.029 seconds

Dissolved oxygen concentration regulation using auto-tuning PID controller in fermentation process

  • Hwang, Young-Bo;Lee, Seung-Chul;Chang, Ho-Nam;Chang, Yong-Keun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.790-794
    • /
    • 1989
  • A novel control method involving an automatic tuning of digital PID controller parameters has been developed for better regulation of DO (dissolved oxygen) concentration in batch fermentation processes. Heuristic reasoning allows the PID controller to reach improved tuning decisions based upon the supervision of certain control performance indices in the same cognitive manner as in an expert control.

  • PDF

A Design Method of Model Following Digital PID Controller and Its Application to Speed Control of the Current Source Inverter-Fed Induction Motor (모델추종 디지탈 PID제어기의 설계와 유도전동기에의 적용)

  • 이동철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.3
    • /
    • pp.29-36
    • /
    • 1998
  • In this paper, We are proposed a design method of the digital PID controller based on the model following method which minimized the error integral of the step response between the control system and the reference model. And we are applied it by a speed control of the current type inverter induction motor. The dynamic characteristic of the system was expressed by the step response, and then the optimal parameter of the PID controller can be easily obtained by the matrix computation. The derived algorithm can be implemented through a simple and systematic design procedure. Finally, We have shown the result with a computer simulation by the present method which proposed the speed control system and stable operation and fairly transient performance. And then tt was found results by experimental process.

  • PDF

Time Domain Based Digital Controller for Buck-Boost Converter

  • Vijayalakshmi, S.;Sree Renga Raja, T.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1551-1561
    • /
    • 2014
  • Design, Simulation and experimental analysis of closed loop time domain based Discrete PWM buck-boost converter are described. To improve the transient response and dynamic stability of the proposed converter, Discrete PID controller is the most preferable one. Discrete controller does not require any precise analytical model of the system to be controlled. The control system of the converter is designed using digital PWM technique. The proposed controller improves the dynamic performance of the buck-boost converter by achieving a robust output voltage against load disturbances, input voltage variations and changes in circuit components. The converter is designed through simulation using MATLAB/Simulink and performance parameters are also measured. The discrete controller is implemented, and design goal is achieved and the same is verified against theoretical calculation using LabVIEW.

Control techniques for improving response of the AVR (AVR의 응답속도개선을 위한 제어기법에 관한 연구)

  • Lee, Hyung-ki;Kim, Song-Hyun;Kim, Hyun-soo;Kim, Gi-ryang;Kim, Gwan-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2534-2539
    • /
    • 2015
  • Method for regulating voltage using a generator voltage regulating device (AVR) is divided in an existing analog system and a digital replacement. Typically, to adjust the voltage by using a brushless excitation system of the type to be reduced for a voltage change under all. The control method of the AVR as a PID (proportional-integral-differential) control method is widely used. However, the control scheme is to reduce the transient response of the control parameters of the controller to the control object. Therefore, if the control target should change, there is a problem, reset the parameters of the controller again. In this study, without having to reset the parameters of the controller for the parameter variations to be controlled iPID (intelligent PID) using a controller designed to obtain a generator AVR system voltage variation is small in response to full load is applied to and through simulations and experiments improved transient response.

One Board Controller Design with ATmega 128 Chip for Manetic Levitation System (ATmega 128 소자를 이용한 자기부상계 제어용 원-보드 컨트롤러의 설계)

  • Choung, K.G.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.14 no.1
    • /
    • pp.65-70
    • /
    • 2010
  • Magnetic levitation system is nonlinear and inherently unstable, so it is difficult to control. Analog control circuit was widly used as the controller of magnetic levitation system, but digital controller is now substituted for analog controller according to development of digital electronics. In this study, Atmel AVR series, ATmega 128 which is a kind of $\mu$-processor for digital controller is used because the chip is cheap and popular. We designed and made ATmega 128 one-board controller and aimed to verify validity through the experiance of levitation response.

Digital Rebalance Loop Design for a Dynamically Tuned Gyroscope using Frequency Weighted H$_2$ Controller (주파수 가중 H$_2$ 제어기를 이용한 동조자이로스코프의 디지털 재평형루프 설계)

  • 송진우;이장규;강태삼
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1131-1139
    • /
    • 1999
  • In this paper, we present a wide-bandwidth digital rebalance loop for a dynamically tuned gyroscope(DTG) based on {{{{ { H}_{2 } }}}} methodology. The operational principle and the importance of a rebalance loop are explaind, first. The augmented plant model is constructed, which includes a gyroscope model and an integrator. An {{{{ { H}_{ 2} }}}} based controller is designed for the augmented plant model. To verify the performance of the controller, a digital rebalance loop for a DTG is designed, fabricated and experimented. Through frequency response analyses and experiments using a real DTG, it is confirmed that the controller is more robustly stable and has a wider bandwidth compared with those of a conventional PID controller, contributing to the performance improvement of a DTG.

  • PDF

The development of compensated bang-bang curent controller for DC series wound motor (직류직권 모타용 보상된 Bang-Bang 전류제어기 개발)

  • 김종건;이만형;배종일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.52-55
    • /
    • 1996
  • In order to establish the robust current controller design technique of series wound motor driver system. This paper proposes a method of compensated Bang-Bang current control using a series wound motor driver system under improperly variable load. To get minimum time torque control. A compensated Bang-Bang current controller structure is simpler than the structure of PID plus Bang-Bang controller. This paper shows that a general 8 bits microprocessor be used efficiently implementing such an algorithm. The calculation time of software is extremely small when compared with conventional PID plus Bang-Bang a controller. Both nonlinear operating characteristics of Digital switching elements and Describing Function methods are used for the analysis and synthesis. Real time implementation of compensated Bang-Bang current is achieved. Concept design strategy of the control and PWM waveform generation algorithms are presented in the paper.

  • PDF

Analysis of PID Control for Microprocessor-based Current Source Inverter-Induction Motor System (마이크로프로세서에 의한 전류형 인버어터 - 유도전동기의 PID제어시스템에 대한 해석)

  • 박민호;전태원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.7
    • /
    • pp.283-288
    • /
    • 1985
  • This paper is concerned with the analysis of microprocessor-based PID control for the current source inverter-induction motor derive system. A linearized dynamic model of the motor is derived and is converted into the discrete-time model. With the equation, the overall system including the feedback loops is formulated into a single discrete-time state equation. The stability regions are determined at various values of controller gains. The transient responses of the motor speed are simulated by digital computer and are verified by laboratory experiments.

  • PDF

A Design and Control of an Active Magnetic Bearing System (능동형 자기 베어링 시스템의 설계 및 제어)

  • 김종문;최영규
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.82-89
    • /
    • 2004
  • In this paper, an active magnetic bearing(AMB) system is designed and controlled using a digital Proportional-Integral-Derivative(PID) control concept. The plant dynamics consisting of actuator and rigid rotor dynamics are described. A digital PID controller with a global control and a local control concept is designed and implemented using digital signal processor. Some experiments are conducted with each global control and local control concept. These include start-up test, impulse test, whirl response, and generator load test. The experimental results and comparison between those of a global control and a local control indicate that the global control of concept has impressive static and dynamic control performance for the prototype considered. From the whirl test, the developed system set can be controlled within about $\pm10\mu\textrm{m}$ gap variation at the rotational speed of 6000rpm and generate the AC power of frequency of $60\textrm{Hz}$, voltage of 100V and current of 0.8$\textit{A}$.

Simple digital control of cell mass in biological CSTR (연속 교반 발효조에서 균체농도의 단순 디지탈 제어)

  • 이경범;황영보;이지태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.647-651
    • /
    • 1987
  • Yeast biomass in a biological continuous stirred tank reactor was controlled with an APPLE II microcomputer using adaptive control theory of bilinear systems. The controller used is as simple as a PID controller, but required less information. Cell concentration was well controlled by adjusting the inlet flow rate following the algorithm.

  • PDF