• Title/Summary/Keyword: digital PID controller

Search Result 151, Processing Time 0.02 seconds

A Study on Marine Diesel Engine Speed Control by Application of H Control ($H_{\infty}$ 제어에 의한 박용디젤기관의 속도제어에 관한 연구)

  • 양주호
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.4
    • /
    • pp.320-328
    • /
    • 1994
  • In 1980 s to 1990 s the marine propulsion diesel engines have been developed into lower speed and longer stroke for the enegy saving (small S.F.O.C). As these new trends the conventional mechanical-hydraulic governors were not adapted to the new requirements and the digital governors have been adopted in the marine use. The digital governors usually use the control algorithms such as the PID control, optimal control, adaptive control and etc. While the engine has delay time and parameter variations these control algorithms have difficulty in considering the stability and the robustness for the model uncertainty. In this study, the $H_{\infty}$ controller design method are applied in order to design the feedback controller K(s) to the speed control of the low speed marine diesel engine, and the two-degree-of-freedom control system is constituted with $H_{\infty}$controller. By comparison of responses of the two-degree-of-freedom control system under the delay time and parameter variations is confirmed.

  • PDF

A Development of Sub-Controller for Game Motion Simulator (게임기용 운동재현기의 하위제어기 설계)

  • Jung, Gyu-Hong;Suh, Chung-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.146-151
    • /
    • 2001
  • The Grand-Touring is a game motion simulator that simulates the race-car driving motion with three hydraulic cylinders which connect the platform and base in parallel. Its motion control system consists of the PC-based main controller and micro-controller based sub-controller. The former one process the dynamic image of race-car in response to the driver's action and computes the reference command for each cylinder and the latter one is designed for the tracking control of hydraulic cylinder and interfacing the auxiliary signals between various sensors/actuator and main controller. In this research, we developed the sub-controller that implements the required functions of Grand-Touring and prove the overall performance with experiments.

  • PDF

Temperature control for a hot water heating circulating pump system using a nonlinear sliding surface (비선형 슬라이딩 면을 이용한 온수난방 순환펌프 시스템의 온도 제어)

  • Ahn, Byung-Cheon;Cang, Hyo-Whan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.162-168
    • /
    • 1997
  • Digital variable structure controller(DVSC) is implemented to control the temperature for the hot water heating circulating pump control system. For the DVSC, a control algorithm is suggested, which using a nonlinear sliding surface and a PID sliding surface outside and inside of steady state error boundary layer, respectively. Smith predictor algorithm is used for the compensation of long dead time. The DVSC of the suggested algorithm yields improved control performance compared with the one of existing algorithm. The system responses with the suggested DVSC shows good responses without overshoot and steady state error inspite of heating load change. By decreasing sampling time, dead time and rise time are increasing, and system output noise by flow dynamics is amplified.

  • PDF

A precision temperature control system using one-board micom (One-board micom을 이용한 정밀 온도 제어 시스템)

  • 주해호;조덕현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.457-461
    • /
    • 1988
  • In this study an one-board micom controlled precision temperature control system has been developed. The digital temperature control system is consisted of an one-board micom as digital controller, a 12-bit A/D and D/A converter, a power amplifier, a NTC thermister, a preamplfier and a heat chamber. An operating control program for the control system was written in Z80 machine language. A Dual-PID predictor control algorithm was proposed. Experments were conducted with different sampling time and limitted error value. As a result, the temperature in a heat chamber can be well controlled within +- 0.2 .deg.C when the sampling time was applied to 10 sec and the limitted error value +- 0.5 .deg.C under the dual-PID predictor control algorithm. By means of one-board micom overall system has been reduced in size and volume, thus the system becomes compact and less expensive.

  • PDF

Attitude controller design and implementation for a helicopter propeller setup using a robust multivariable control (견실한 다변수 제어에 의한 모형 헬리콥터의 자세제어기 설계및 실현)

  • Lee, Seung-Guk;Lee, Myeong-Ui;Gwon, O-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.32-37
    • /
    • 1998
  • This paper deals with the implementation of a robust multivariable controller using DSP board and the application to real systems. The LQG/LTR (Linear Quadratic Gaussian with Loop Transfer Recovery) controller proposed by Doyle et al.[1,2] is adopted to design the control system. A helicopter propeller setup is taken as the controlled system in the current paper, and the mathematical model is derived to design the multivariable controller. The performance of the controller is evaluated via simulations, and implementation and application to the MIMO system shows that the control performances are satisfactory and superior to those of the PID controller.

  • PDF

Development of Intelligent Digital Governor System for Steam Turbine Generator in Buk-Cheju Thermal Power Plant (북제주 화력 발전소 스팀 터빈 발전기용 인텔리전트 디지털 조속기 개발)

  • 전일영;하달규;신명철;김윤식
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.608-613
    • /
    • 1999
  • This thesis aims at developing of a digita governor system for the steam turbine generator on the Buk-Cheju Thermal Power Plant of KEPCO. The steam turbine generator of the Buk-Cheju Thermal Power Plant is modelled. As a hardware platform, a triple modular system which is fitted 32-bit microprocessor of Motorola company to perform the digital governor system is used. The parameters of the PID controller algorithm in the speed control block is tuned on the basis of the estimated model.

  • PDF

Digital variable structure control of a hot-water heating control system with long dead time (긴 지연시간을 갖는 온수난방 제어시스템의 디지틀 가변구조제어)

  • 안병천;장효환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.232-237
    • /
    • 1991
  • Digital Variable Structure Controller(DVSC) is proposed to control variable speed recirculating pump for hot-water heating control system. In this study, nonlinear sliding line is used beyond output error boundary layer and PID sliding line is used within the layer. For long dead time compensation, constraint is added to Smith predictor algorithm. Steady state error is eliminated by using the proposed sliding line in spite of heating load change. By decreasing sampling time, good sliding motion is yielded but system output noise bv flow dynamics is amplified.

  • PDF

Tip Position Command Tracking of a Flexible Beam Using Active Vibration Control (능동진동제어를 이용한 유연보의 끝단위치 명령추종연구)

  • Lee, Young-Sup;Elliott, Stephen-J
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.643-648
    • /
    • 2003
  • The problem considered in this paper is that the tip position of a flexible cantilever beam is controlled to follow a command signal, using a pair of piezoelectric actuators at the clamped end. The beam is lightly damped and so the natural transient response is rather long, and also since the sensor and actuator are not collocated, the plant response is non-minimum phase. Two control strategies were investigated. The first involved conventional PID control in which the feedback gains were adjusted to give the fastest closed-loop response to a step input. The second control strategy was based on an internal model control (IMC) architecture. The control filter in the IMC controller was a digital FIR device designed to minimize the expectation of the mean square tracking error. The IMC controller designed fur the beam was found to have very much reduced settling times to a step input compared with those of the PID controller.

  • PDF

Design of a Real Time Adaptive Controller for SCARA Robot Using Digitl Signal Process (디지탈 신호처리기를 사용한 스카라 로보트의 실시간 적응제어기 설계)

  • 김용태;서운학;한성현;이만형;김성권
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.472-477
    • /
    • 1996
  • This paper presents a new approachtothe design of adaptive control system using DSPs(TMS320C30) for robotic manipulators to achieve trajectory tracking by the joint angles. Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaaptive feedforward controller, feedback controller, and PID type time-varying auxillary control elements. The prpposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

A Study on the Real Time Adaptive Controller for SCARA Robot Using TMS320C31 Chip (TMS320C31 칩을 사용한 스카라 로봇의 실시간 적응제어데 관한 연구)

  • 김용태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.79-84
    • /
    • 1996
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C31) for robotic manipulators to achieve trajectory tracking by the joint angles. Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller, feedback controller, and PID type time-varying auxillary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF