• Title/Summary/Keyword: digestion method

Search Result 554, Processing Time 0.028 seconds

Matrix effect on the Determination of Inorganic Priority Pollutants in Sludges (오니 시료중의 무기 Priority Pollutants의 분석 과정에 미치는 매질의 영향)

  • Lee, Huk-Hee;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.297-304
    • /
    • 1998
  • The three analysis methods, EPA method 3050, the method offered by Ministry of Environment in Korea, and modified method corrected in this laboratory, were studied to investigate the effect of matrix on the analysis of inorganic priority pollutants. 7 inorganic priority pollutants(Ni, Cr, Cu, Zn, Pb, Cd, Hg) were spiked to the plating, leather, paper, electric, and dye sludges. Mean recovery of the elements except Hg was 95.5% when the procedure of EPA method was applied. However, recovery by the two other extraction methods showed 11.1% and 27.7%, respectively. Digestions were done by MDS (microwave digestion system) and $HNO_3+HClO_4$ methods. To study organic and inorganic matrix effect, samples were made by adding triethanol amine as a organic matrix and $FeCl_3{\cdot}6H_2O$+$AlCl_3{\cdot}6H_2O$ as a inorganic matrix, respectively. The extracts were analyzed by AAS and HG-AAS. Mean recovery of the elements by the $HNO_3+HClO_4$ procedure, except Hg, gave better result than that of the MDS method. Mean recovery of elements was decreased when organic and inorganic matrices were added in the sludge samples. The procedure of MDS and $HNO_3+HClO_4$ digestion gave higher recoveries than that of direct analysis. In general, the results of the studies showed a significant matrix effect on the inorganic priority pollutants analysis in sludges.

  • PDF

To develop the classification method of Agricultural by-productions for biogas production

  • Kim, Minjee;Kim, Sanghun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.155-160
    • /
    • 2015
  • The objective of this study was to develop the classification method of various organic wastes. Specifically, the effects of proximate composition on the biogas production and degradation rates of agricultural by-production was investigated and a new standards for mixture of various organic wastes based on proximate composition combination was developed. Agricultural by-products (ABPs) with medium total carbohydrate, medium crude protein and low fat contents demonstrated the single step digestion process. ABPs with low total carbohydrate, high crude protein and high fat contents demonstrated the two step digestion process of Diauxic growth. The single ABP (Class No. 15) and the mixed ABPs (Class No. 12+18, 6+12+22, 9+12+18) after 10days showed the similar biogas yield pattern. We can use the classification method for the more ABPs and organic wastes from factory and municipal waste treatment plant for the high efficient biogas production.

Optimization of Enzyme Digestion Conditions for Quantification of Glycated Hemoglobin Using Isotope Dilution Liquid Chromatography-Tandem Mass Spectrometry

  • Jeong, Ji-Seon
    • Mass Spectrometry Letters
    • /
    • v.5 no.2
    • /
    • pp.52-56
    • /
    • 2014
  • Glycated hemoglobin (HbA1c) is used as an index of mean glycemia over prolonged periods. This study describes an optimization of enzyme digestion conditions for quantification of non-glycated hemoglobin (HbA0) and HbA1c as diagnostic markers of diabetes mellitus. Both HbA0 and HbA1c were quantitatively determined followed by enzyme digestion using isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS) with synthesized N-terminal hexapeptides as standards and synthesized isotope labeled hexapeptides as internal standards. Prior to quantification, each peptide was additionally quantified by amino acid composition analysis using ID-LC-MS/MS via acid hydrolysis. Each parameter was considered strictly as a means to improve digestion efficiency and repeatability. Digestion of hemoglobin was optimized when using 100 mM ammonium acetate (pH 4.2) and a Glu-C-to-HbA1c ratio of 1:50 at $37^{\circ}C$ for 20 h. Quantification was satisfactorily reproducible with a 2.6% relative standard deviation. These conditions were recommended for a primary reference method of HbA1c quantification and for the certification of HbA1c reference material.

The Study on Pre-treatment Method of Filter for Analysing the Heavy Metals in Air Quality (대기중의 중금속 분석을 위한 여지의 전처리 방법에 관한 연구)

  • 김광래;이상칠;어수미;김민영;신재영;이재영
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2002.04a
    • /
    • pp.16-19
    • /
    • 2002
  • This study was carried out to establish the standardized analysis method in order to decide accurate concentrations of hazardous metals in the air. Acid decomposition method used usually was compared to microwave digestion method. Comparing results of tested background concentration in blank filter, we found that the magnitude of element concentration was Na, Ca, K, Mg, Al and Ba by order. The element concentrations of Glass fiber filter were higher than those of Quartz fiber filter, and the number of undetected components in Glass fiber filter was lower than that in Quartz fiber filter. Thus it is supposed that the concentration of background elements in Glass fiber filter was higher than those in Quartz fiber filter The extraction rate of microwave digestion method was superior to those of acid decomposition method during the test of blank filter as well as SRM of NIST. In case of the SRM of NIST, the average extraction efficiency of acid decomposition Method and microwave pretreatment is 53.8∼82.7%, 81.3∼97.1%, respectively. This result might be caused by the closed system of Microwave, which make outflow and loss of components less. Also microwave digestion method has other merits such as the minimization of time, reagents, and contamination. Furthermore, if the extraction condition, extraction time and used acids are optimized, the better results will be represented.

  • PDF

A Comparison of Efficiency of Two Pretreatment Methods for Extracting Heavy Metals from Welding Fume Samples (용접흄내 중금속분석시 전처리 방법별 효율비교)

  • Son, Dooyoung;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.2
    • /
    • pp.135-144
    • /
    • 1999
  • The purposes of this study were to survey types of pretreatment methods adopted by industrial hygiene laboratories in Korea for extracting heavy metals in welding fume samples and to compare performances of two pretreatment methods, the acid extraction and the microwave digestion, in extracting heavy metals contained in the real workplace samples from various welding jobs including arc, argon, and carbon dioxide. A total of 25 analytical chemists in the industrial hygiene laboratories participating the quality control program directed by the Korea Industrial Safety Corporation were interviewed by telephone. For the purpose of comparing performance of extracting heavy metals from real workplace samples, a total of 53 welders from 21 workplaces located in Anyang, Uiwang, and Kunpo areas were sampled from the period of March 22, 1999 to April 20, 1999. It was found that the most frequently adopted method for samples from the quality control program was the acid extraction method(40%) followed by the NIOSH 7300 method(36%). The NIOSH method, however, was the dominant method(36%) for samples from workplace followed by the acid extraction method(28%). In this study, two extraction methods, the acid extraction and the microwave digestion, were compared in terms of recovery rate, accuracy, and precision for both manganese and chromium. Both methods produced comparable results for the samples prepared for the quality control program. In contrast, concentrations of two heavy metals determined from real workplace samples pretreated with the microwave digestion method were statis tically significantly higher, manganese(166%) and chromium (200%), than those of utilizing the acid extraction method. These findings were consistent regardless of types of welding techniques used. The results of this study clearly show the importance of verifying the analytical performances of extraction methods for heavy metals not only for the samples from the quality control program but also from the real world samples collected from welding jobs.

  • PDF

Treatment Efficiency Evaluation of Integrated Two-Phase Pilot-Scale Anaerobic Digestion Using Food Waste Leachate (Pilot Scale 일체형 2상 혐기성소화에서의 음폐수 처리효율 평가)

  • Song, Hancheul;Kim, Dongwook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.2
    • /
    • pp.51-58
    • /
    • 2016
  • In the Integrated Two-Phase Anaerobic Digestion (ITPAD) process, acid and methane fermentation take place in one reactor, which has advantages to cope with organic load variation and reduce foot-print required, compensating disadvantages of Conventional Separated Two-Phase Anaerobic Digestion (CSTPAD). In the present work, organic matter degradation efficiency and biogas generation amount and other performance parameters of the ITPAD fed with food waste leachate were analyzed. In addition, feasibility study on the ITPAD method was performed by comparing its digestion efficiency with that of the CSTPAD. Organic matter alteration and biogas generation of the integrated method were examined for approximately 130 days based on the 5ton/day scaled pilot plant. Experiment results revealed that organic matter removal rate was 80% for mean food waste leachate input amount of $4.1m^3/day$. The biogas generation rate was $63.0m^3$ per ton of food waste leachate input, corresponding to the input VS amount of $0.724m^3/kg-VS_{added}$, and methane content of generated biogas was approximately 61.3%. The ITPAD has a comparable or higher organic matter removal efficiency compared to the conventional separated two-phase anaerobic digestion method. Consequently, the ITPAD method has a great need to commercialize a food waste leachate treatment technology against highly concentrated organic waste leachate.

Comparison of In Vitro Digestion Kinetics of Cup-Plant and Alfalfa

  • Han, K.J.;Albrecht, K.A.;Mertens, D.R.;Kim, D.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.5
    • /
    • pp.641-644
    • /
    • 2000
  • In vitro true digestibility of cup-plant (Silphium perfoliatum L.) is higher than other alternative forages and comparative to alfalfa (Medicago sativa L.) even at the high neutral detergent fiber (NDF) concentration. This study was conducted to determine whether the digestion kinetic parameters of cup-plant could explain high in vitro true digestibility of cup-plant at the several NDF levels. Cup-plant and alfalfa were both collected in Arlington and Lancaster, Wisconsin to meet the NDF content within 40 to 50% range. The collected samples were incubated with rumen juice to investigate the digestion kinetics at 3, 6, 9, 14, 20, 28, 36, 48, and 72 h. Kinetics was estimated by the model $R=D_0\;e-k(t-L)+U$ where R is residue remaining at time t, and $D_0$ is digestible fraction, k is digestion rate constant, L is discrete lag time, and U is indigestible fraction. Parameters of the model were estimated by the direct nonlinear least squares (DNLS) method. Digestion rate and potential extent of digestion were not statistically different in either forage. However, alfalfa had shorter lag time (p<0.05). The indigestible fraction increased with maturation in alfalfa and in cup-plant (p<0.05). The ratio of indigestible fraction to acid detergent lignin (ADL) was higher in cup-plant than in alfalfa (p<0.05). From the results, alfalfa is probably digested more rapidly than cup-plant, however, cup-plant maintains higher digestibility with maturation due to a relatively slower increase of indigestible fraction in NDF.

Effects of Mixing Ratio and Organic Loading Rate of Acid Fermented Food Wastes and Sewage Sludge on the Anaerobic Digestion Process (음식물찌꺼기 산발효산물과 하수슬러지의 혼합비 및 유기물부하가 병합처리에 미치는 영향)

  • Ahn, Chul-Woo;Park, Jin-Sik;Jang, Seong-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.247-256
    • /
    • 2006
  • This study has been conducted for the process of food wastes disposal using surplus capacity of established sewage treatment plant by co-digestion of fermented food wastes and sewage sludge after thermophilic acid fermentation of food wastes. The co-digestion of thermophilic acid fermented food wastes and sewage sludge was performed by semi-continous method in mesophilic anaerobic digestion reactor. It showed great digestion efficiency as the average SCOD and VS removal efficiency in organic loading rate 3.30g VS/L.d. were 74.2% and 73.6%, and the gas production rate and average methane content were 0.440 L/g $VS_{add}.d$ and 66.5%, respectively. Based on the results of this study, the co-digestion of thermophilic acid fermented food wastes and sewage sludge in sewage treatment plant is able to improve treatment efficiency of anaerobic digestion reactor and to dispose food wastes simultaneously, and was proved excellent economical efficiency comparing with any other treatment methods.

Biogas Resource from Foodwaste Leachate Using UASB(Upflow Anaerobic Sludge Blanket) (UASB를 이용한 음폐수의 Biogas 자원화)

  • Min, Boo-Ki;Lee, Chang-Hyun;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.28-34
    • /
    • 2012
  • In this study, we operated a UASB (upflow anaerobic sludge blanket) reactor by using foodwaste leachate as a raw material with the method of Mesophilic Digestion ($35{\pm}0.5^{\circ}C$) and Thermophilic Digestion ($55{\pm}0.5^{\circ}C$). During 20 days of operating time with the Mesophilic Digestion, the recirculation ratio of effluent was stepwisely changed in every five days. Thermophilic Digestion was carried out at the same condition for Mesophilic Digestion. Results showed that the organic removal efficiency of Mesophilic Digestion was over 90% and the yield of methane production was from 66 up to 70%. The organic removal efficiency of Thermophilic Digestion was over 80% and the yield of methane production was between 62 to 68%. Also, when UASB reactor was operating to over the 3Q effluent recirculation, the experiment could be carried out economically and stably.

Influence of Starch Concentration and Mastication on the Lipid Digestion and Bioaccessibility of β-carotene loaded in Filled Hydrogels (베타-카로텐 탑재 하이드로 젤 농도와 저작에 따른 지방소화율과 생체접근율의 변화)

  • Mun, Saehun;Kim, Yong-Ro
    • Korean journal of food and cookery science
    • /
    • v.33 no.2
    • /
    • pp.181-189
    • /
    • 2017
  • Purpose: This study was conducted to examine the effects of the starch concentration of filled hydrogel and the addition of ${\alpha}-amylase$ and simulated mastication processing in an oral phase on lipid digestion and ${\beta}-carotene$ bioaccessibility of filled hydrogels. Methods: Lipid digestion and ${\beta}-carotene$ bioaccessibility of the filled hydrogels were measured after the samples were passed through an in vitro gastrointestinal tract model consisting of oral, gastric, and small intestinal phases. Results: The initial rate and final extent of lipid digestion were higher in the filled hydrogels than in the emulsion when the filled hydrogels were treated in an oral phase without simulated mastication processing and addition of ${\alpha}-amylase$, regardless of starch concentration. However, when the filled hydrogels were minced using mortar and pestle for 2 min and were exposed to ${\alpha}-amylase$, the filled hydrogel fabricated with 5% starch showed the lowest lipid digestion rate and extent compared to the emulsion and other filled hydrogels. Bioaccessibility of ${\beta}-carotene$ was higher in the filled hydrogels than in the emulsion, regardless of the digestion method performed in an oral phase and starch concentration. However, there were appreciable differences in bioaccessibility of the filled hydrogels depending on whether or not simulated mastication and addition of ${\alpha}-amylase$ were employed. Conclusion: These results suggested that the rheological properties of initial filled hydrogels and simulated mastication processing in an oral phase plays an important role in determining the lipid digestion and ${\beta}-carotene$ bioacccessibility entrapped within filled hydrogels.