• Title/Summary/Keyword: digested food waste leachate

Search Result 3, Processing Time 0.015 seconds

Effects of volatile fatty acids on microalgae growth and N, P consumption in the advanced treatment process of digested food waste leachate by mixotrophic microalgae (Mixotrophic microalgae에 의한 음폐수 소화액 고도처리에 있어 유기산이 microalgae의 성장 및 질소, 인 제거에 미치는 영향)

  • Zhang, Shan;Hwan, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.357-362
    • /
    • 2017
  • Acetate, propionate, butyrate are the major soluble volatile fatty acids metabolites of fermented food waste leachates. This work investigate the effects of volatile fatty acid on the growth rate and $NH_4-N$, $PO_4-P$ removal efficiency of mixotrophic microalgae Chlorella vulgaris to treat digested food waste leachates. The results showed that acetate, propionate and butyrate were efficiently utilized by Chlorella vulgaris and microalgae growth was higher than control condition. Similar trends were observed upon $NH_4-N$ and $PO_4-P$ consumption. Volatile fatty acids promoted Chlorella vulgaris growth, and nutrient removal efficiencies were highest when acetate was used, and butyrate and propionate showed second and third. From this work it could be said that using mixotrophic microalgae, in this work Chlorella vulgaris, fermented food waste leachates can be treated with high efficiencies.

Anaerobic Treatment of Food Waste Leachate for Biogas Production Using a Novel Digestion System

  • Lim, Bong-Su;Kim, Byung-Chul;Chung, In
    • Environmental Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.41-46
    • /
    • 2012
  • In this study, the performance of new digestion system (NDS) for the treatment of food waste leachate was evaluated. The food waste leachate was fed intermittently to an anaerobic reactor at increasing steps of 3.3 L/day (hydraulic retention time [HRT] = 30 day), 5 L/day (HRT = 20 day), and finally 10 L/day (HRT = 10 day). In the anaerobic reactor, the pH and alkalinity were maintained at 7.6 to 8.2 and 8,940-14,400 mg/L, respectively. Maximum methane yield determined to be 0.686L $CH_4$/g volatile solids (VS) containing HRT over 20 day. In the digester, 102,328 mg chemical oxygen demand (COD)/L was removed to produce 350 L/day (70% of the total) of biogas, but in the digested sludge reduction (DSR) unit, only 3,471 mg COD/L was removed with a biogas production of 158 L/day. Without adding any chemicals, 25% of total nitrogen (TN) and 31% of total phosphorus (TP) were removed after the DSR, while only 48% of TN and 32% of TP were removed in the nitrogen, phosphorus, and heavy metals (NPHM) removal unit. Total removal of TN was 73% and total removal of TP was 63%.

Effects of acetate in food waste leachate on cell growth and nitrogen, phosphorus consumption by Chlorella vulgaris (음폐수 소화액에 포함된 acetate가 Chlorella vulgaris의 성장 및 질소, 인 제거에 미치는 영향)

  • Zhang, Shan;Choi, Kyoung Jin;Lee, SeokMin;Joo, Sung-Jin;Han, Thi-Hiep;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.5
    • /
    • pp.573-579
    • /
    • 2014
  • VFAs like acetate are the major soluble metabolites of food waste leachates after digested. Therefore this study investigates the effect of acetate on growth rate and nutrient removal efficiency of Chlorella vulgaris to treat digested food waste leachates. The initial acetate concentration varied from 0 to 20 mM. As a result, Chlorella vulgaris growth rate was increased as high as the concentrations ranged from 0 to 20 mM. The same trend was observed with $NH_4$-N and $PO_4$-P consumption. The highest growth rate and the highest $NH_4$-N, $PO_4$-P removal rate were observed at acetate concentration of 20 mM. The microalgae growth rate and $NH_4$-N, $PO_4$-P removal rates were 1.5, 1.8, 2.3 times higher than the condition without acetate.