• Title/Summary/Keyword: diffusive resistance

Search Result 23, Processing Time 0.09 seconds

Effect of Ultrafiltration on the Clearance of Artificial Kidney Dialyzers (인공신장 투석기에서 Ultrafiltration이 Clearance에 미치는 영향)

  • Jang, Ho-Nam;Kim, Jin-Gon;Park, Han-Cheol
    • Journal of Biomedical Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.3-8
    • /
    • 1982
  • Solute transfer in artificial kidney dialyzers was analyzed using Kedem-Katcha- Isky's description on membrane transport. Mass transfer coefficient, K was deduced from the diffusive clearance of commercial hemodialyzers. It can to seen that Kd increases with the increase of blood flow rate, which means that there is substantial resistance in the blood phase for solute transport. Total clearance was estimated with the Werynski's formula. The increase in total clearance due to ultrafiltration was most significant for middle molecules like vitamin Bla, however that for smaller molecules such as urea and creatinine was minimal.

  • PDF

Effect of Water Stress at Different Growth Stages on the Growth and Yield of the Transplanted Rice Plants (벼의 생육기별 수분결핍장애가 생육 및 수량에 미치는 영향)

  • 남상용;권용웅;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.28 no.2
    • /
    • pp.31-41
    • /
    • 1986
  • Knowledge of the degree of yield reduction due to water stress at different crop growth stages in rice production is important for rational scheduling of irrigation during periods of insufficient water supply. Previous studies to determine the degree of yield reduction duo to water stress suffered from interruptions by rain during experiment. Also the findings did rot relate the degree of water stress to the soil water potential and water deficit status of rice plants. In this study, two years experiments were conducted using the high yielding rice varieties, an Indica x Japonica (Nampoong) and a Japonica variety(Choochung). These were grown in 1/200$^{\circ}$ plastic pots placed under a rainfall autosensing, sliding clear plastic roof facility to control rainfall interruptions. The results obtained were as follows. 1.The two varieties differed in the growth stage most sensitive to water stress as well as the degree of yield reductions. When rice plants were stressed to the leaf rolling score 4 and soil water potential of about - 20 bar at major crop growth stages which included heading, booting, non-effective tillering, panicle initiation and early tillering stages, the yield reductions in the Indica x Japonica variety were 58%, 34%, 27%, 22%, and 21%, respectively, whereas in the Japonica vairety they were 23%, 36%, 1%, 13% and 22%, respectively. This result show that the recommended drainage during non-effective tillering is valid only for the Japonica variety. Sufficient irrigation at booting, heading and early tillering stages are necessary for both varieties. 2.The two varieties showed visible wilting symptoms when the soil water potential dropped to about - 3.0 bar. The Japonica variety showed more leaf rolling than the Indica X Japonica. However, it had a higher retention of leaf water content and greater stomatal diffusive resistance. When the soil water potential dropped, the Japonica variety showed leaf rolling score (LRS) 1 at 0 soil-5. 0 bar and LRS 2 at 0 soil -6.0 bar while the Indica X Japonica showed LRS 1 at 0 soil - 5.5 bar and LRS 2at 0 Soil - 9.0 bar. The stomatal diffusive resistance was maximum at the second top leaf blade in both varieties at intermediate water stress of 0 soil - 4.5 bar. 3.The number of days that was required for the soil water potential to drop to-3. 0 bar and to - 20.0 bar after drainage of irrigation water from the 20cm deep silty clay loam soil in the pots were 6 and 13 days, respectively for booting stage, and 7 and 11 days, respectively for heading stage, 9 and 12 days, respectively for panicle initiation stage, and 12 and 19 days, respectively for early tillering stage. 4.Water stress during the early tillering stage recorded the longest delay in beading time, the largest reduction in panicle numbers and a substantial yield decrease of 20%. This calls for better water management to ensure the availability of water at this stage, particularly during drought periods. In addition, a reexamination of the conventional inter-drainage practice during the non-effective tillering stage is necessary for the high yielding Indica X Japonica varieties.

  • PDF

Antioxidant Enzyme, Chlorophyll Contents and Stomatal Changes of Five Tree Species under Ozone Stress (저농도 오존처리에 따른 다섯 가지 유묘의 기공 변화, 엽록소 함량 및 항산화 효소 활성)

  • Ryang, Soo Zin;Woo, Su Young;Je, Sun Mi
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.4
    • /
    • pp.470-476
    • /
    • 2007
  • This study is conducted to identify responses of plants to low $O_3$ concentration, Five species, Liriodendron tulipifera, Cornus officinalis, Ginkgoba biloba, Zelkova serrata, and Acer palmatum, were exposed to low ozone concentration from June 9 to July 8 in the phytotron, We measured chlorophyll contents, leaf diffusion resistance, leaf transpiration, and antioxidant enzyme activities; ascorbate peroxidase(APX), Especially, Liriodendron tulipifera and Cornus officinalis showed sensitive responses to ozone treatment as visible injuries, while other four species relatively showed tolerant responses. However, we noticed that almost all species under ozone treatment were lower physiological activities such as chlorophyll contents, leaf diffusion resistance, leaf transpiration, and antioxidant enzyme activities with time even without any visible injury.

Limitation of Light Energy Utilization in the Fallen Stems of Opunttia bigelovii without CO2 and Water Absorption (지상에 떨어진 Opunttia bigelovii 선인장의 줄기에 있어서 광에너지의 이용한계)

  • Chang, Nam-Kee
    • The Korean Journal of Ecology
    • /
    • v.3 no.1_2
    • /
    • pp.31-39
    • /
    • 1980
  • Light energy utilization was investigated in the fallen stems of Opuntia bigelovii. Threshold time for the decreasing steady state of acid accumulation in the palisade tissue of Opuntia stems was 4 hours under 1,000 $\mu Em^{-2}sec^{-1}$ of PAR at $75^{\circ}C$, while stomatal closing throughout the stem stage was illustrated by 256.0-310.4 sec $\textrm{cm}^{-1}$ of stem diffusive resistance and 0.20g $day^{-1}$ of the water loss rate as cuticular resistance. The acid loss rate in the stems per 4 hours was related to tissue water contents and a few acid loss rate could be recognized at the water content rage of 56.4%~46.8%. Endogenous oscillation of tissue acidity due to the diurnal rhythmic phenomena depended on the tissue water content was found in the Opuntia stems with stomatal closing during the normal day/night cycle. The survival rate of 1 segment to survive 2 years old cactus was 22.7% in desert environments. Such a compensation photosynthesis which utilizes light energy and maintains the reassimilation of endogenous gases was interpreted as conceptual model.

  • PDF

Parameters for Evaluating the Sink Capacity of Broad Leaves Trees for the Gas Phase Air Pollutants (가스상 대기오염물질에 대한 활엽수의 정화능력 평가인자)

  • Kim, Jeong-Gyu;Koh, Kang-Suk
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.4
    • /
    • pp.472-478
    • /
    • 1996
  • It was conducted to compare the availabilities of parameters for evaluating the sink capacity of the broad leaves trees such as Acer saccharium, Ailanthus altissima, Ginkgo biloba, Platanus occidentalis and Salix pseudolasiogyne. These trees, repoted as resistant species to air pollutants, were exposed to $SO_2$, $NO_2$ and CO within a phytotron at $25^{\circ}C$ with 70% of relative humidity. Since the amount of ad- or absorbed gas does not always agree with the amount of accumlated pollutants in leaves and with the stomatal density, it is assumed that the amount of ad- or absorbed gas is the most basal index to evaluate the sink capacity of trees. The stomatal diffusive resistance, which has a good agreement with the amount of ad- or absorbed gas, is also available for evaluating the sink capacity of broad leaves trees.

  • PDF

Comparison of Absorption Ability by Difference of Physiological Response in Three Foliage Plants Exposed to $O_3 and SO_2$ SIngly and in Combination (관엽식물의 생리적 반응 차이에 의한 대기오염물질 $(O_3, SO_2, O_3+SO_2)$의 흡수능 비교)

  • 박소홍;이영이;배공영;이용범
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.1
    • /
    • pp.35-42
    • /
    • 1998
  • We compared absorption and adsorption rates of air pollutants by plants to eveluate the difference of absorption capacity of plant species and kinds of air pollutants, when foilage plants were exposed to $O_3$ and $SO_2$ singly and combiningly. Absorption and adsorption rates of three foliage plants exposed to $O_3$ and $SO_2$ singly and in combination varied a little according to plant species and kinds of air pollutants. But total absorption rate of Spathiphyllum patinii and Ficus benjamina was higher, and it was lower in Pachira aquatica. When exposed to $O_3$ and $SO_2$ at the same concentration, Pachira aquatica absorbed more $O_3$ than $SO_2$, in contrast to Ficus benjamina absorbing more $SO_2$. On the other hand, Spathiphyllum patinii absorbed as much $O_3$ as $SO_2$. Physiological activities were measured since absorption rates were affected by physiological characteristics of plants. Spathiphyllum patinii and Ficus benjamina showed higher photosynthetic and transpiration rates, and Pachira aquatica showed lower values. And diffusive and stomatal resistences of Pachira aquatica were higher than those of two other species. These results showed that absorption capacity was affected by the differences of physiological characteristics. Absorption capacity of air pollutants increased in plants, such as Spathiphyllum patinii and Ficus benjamina, which had high $SO_2$ absorption rate. We found that plants showing high $CO_2$ absorption rates absorb a lot of air pollutnats.

  • PDF

Continuous monitoring of the canopy gas exchange of rice and soybean based on the aerodynamic analysis of the plant canopy

  • Tanaka, Yu;Katayama, Hiroto;Kondo, Rintaro;Homma, Koki;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.60-60
    • /
    • 2017
  • It is important to measure the gas exchange activity of the crops in canopy scale to understand the process of biomass production and yield formation. Thermal imaging of the canopy surface temperature is a powerful tool to detect the gas exchange activity of the crop canopy. The simultaneous measurement of the canopy temperature and the meteorological data enables us to calculate the canopy diffusive conductance ($g_c$) based on the heat flux model (Monteith et al. 1973, Horie et al. 2006). It is, however, difficult to realize the long-term and continuous monitoring of $g_c$ due to the occurrence of the calculation error caused by the fluctuation of the environmental condition. This is partly because the model assumption is too simple to describe the meteorological and aerodynamic conditions of the crop canopy in the field condition. Here we report the novel method of the direct measurement of the aerodynamic resistance ($r_a$) of the crop canopy, which enables us the stable and continuous measurement of the gas exchange capacity of the crop plants. The modified heat balance model shows the improved performance to quantify $g_c$ under the fluctuating meteorological condition in the field. The relationship between $g_c$ and biomass production of rice and soybean varieties is also discussed in the presentation.

  • PDF

Transparent TIO/Ag NW/TIO Hybrid Electrode Grown on PET for Flexible Organic Solar Cell

  • Seo, Ki-Won;Lee, Ju-Hyun;Na, Seok-In;Kim, Han-ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.394.2-394.2
    • /
    • 2014
  • We fabricated highly transparent and flexible Ti doped In2O3 (TIO)/Ag nanowire(NW)/TIO (TAT) multilayer electrodes by linear facing target sputtering (LFTS) and brush-painting for used as flexible for anode organic solar cells(FOSCs). The characteristics of TAT transparent anode as a function of number of brush-painting cycles was also investigated. At optimized conditions we achieved highly flexible TAT multilayer electrodes with a low sheet resistance of $9.01{\Omega}/square$ and a high diffusive transmittance more than 80% in visible region as well as superior mechanical stability. The effective embedment of the Ag NW network between top and bottom TIO films led to a metallic conductivity, high transparency. Based on FE-SEM HRTEM, and XRD analysis, we can find that the Ag NW network was effectively embedded between top and bottom TIO layers due to good flexibility of Ag NW, the TAT multilayer showed superior flexibility than single TIO layer. Successful operation of FOSCs with high power conversion efficiency of 3.01% indicates that TAT hybrid electrode is a promising alternative to conventional ITO electrode for high performance FOSCs.

  • PDF

Influence of Short-term Application of Abscisic Acid in Nutrient Solution on Growth and Drought Tolerance of Tomato Seedlings (토마토 육묘과정에서 단기간 ABA처리가 묘소질과 건조내성에 미치는 영향)

  • Kim, Il-Seop;Vu, Ngoc-Thang;Vo, Hoang-Tung;Choi, Ki-Young;Kim, Young Shik
    • Journal of Bio-Environment Control
    • /
    • v.24 no.1
    • /
    • pp.13-20
    • /
    • 2015
  • This study was conducted to evaluate influence of short-term application of abscisic acid (ABA) in nutrient solution on growth and drought tolerance of tomato seedlings. The treatments included four ABA concentrations (0.5, 1, 2, $3mg{\cdot}L^{-1}$) and control (non-treatment) were applied to the nutrient solution in a hydroponic system. On the $5^{th}$ and $10^{th}$ day after growing in the nutrient solution containing ABA, seedlings were transferred to -5 bars of PEG-8000 in a growth chamber to induce water stress. Except for stem diameter and fresh and dry weight of root, there were no statistical differences in other growth parameters among control, 0.5 and $1mg{\cdot}L^{-1}$ of ABA treatments. Seedlings growths were strongly inhibited in nutrient solution containing 2 and $3mg{\cdot}L^{-1}$ of ABA. The root growth such as fresh and dry weigh of root, total root surface area, and average root diameter was slightly enhanced in $1mg{\cdot}L^{-1}$ of ABA treatment. The elevation of ABA concentrations in nutrient solution resulted in the decrease in transpiration rate and increase in stomatal diffusive resistance and leaf temperature of tomato seedlings. The initiations of seedling wilting after treating in -5 bars of PEG were delayed from 10 hrs in control to 30 hrs in ABA applied treatments. Additionally, the high percentages of recovered seedlings were observed in 0.5 and $1mg{\cdot}L^{-1}$ of ABA treatments after re-irrigation. Therefore, short-term application of $1mg{\cdot}L^{-1}$ of ABA in the nutrient solution stimulated the root growth and drought tolerance of tomato seedlings by delaying the start time of wilting point and enhancing the recovery after re-irrigation.

Improvement of Tomato Seedling Quality under Low Temperature by Application of Silicate Fertilizer (저온 저장 시 규산 처리에 의한 토마토 묘소질 향상)

  • Vu, Ngoc-Thang;Tran, Anh-Tuan;Le, Thi-Tuyet-Cham;Na, Jong-Kuk;Kim, Si-Hong;Park, Jong-Man;Jang, Dong-Cheol;Kim, Il-Seop
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.158-166
    • /
    • 2017
  • The object of this study was to improve tomato seedling quality in low temperature(below 7, $10^{\circ}C$ during night time or daily mean air temperature was $18^{\circ}C$) by application of silicate fertilizer. Six different silicate fertilizer concentrations (8, 16, 32, 64, 128, and 256mM) or water as the control were applied to tomato seedlings twice a week for 20 days. Positive effects were observed in the growth parameters of the seedlings treated with 16 and 32mM silicate fertilizer; the most effective concentration of silicate at which seedlings showed the best performance was 16mM. However, a high concentration of silicate (256mM) caused negative effects on the growth. The transpiration rate decreased alongside with the increase of silicate concentration up to 32mM, possibly due to the increased stomatal diffusive resistance. Silicate stimulated the growth and development of tomato seedlings, resulting in increased growth parameters and root morphology. However, no significant differences were observed among treatment numbers of soil-drenching wuth the silicate (6, 10, or 20 times with 16mM) for 20 days, suggesting that silicate treatment with 6 times may be sufficient to induce the silicate effects. The application of 16mM of silicate fertilizer reduced relative ion leakage and chilling injury during low temperature storage. In addition, the seedlings treated with silicate fertilizer recovered faster than those without silicate treatment after low temperature storage.