• 제목/요약/키워드: diffusion treatment

검색결과 789건 처리시간 0.023초

활성탄 흡착모델과 칼럼실험을 통한 Volatile Organic Compounds의 막확산계수와 표면확산계수의 도출 (Calculation of Film Diffusion Coefficients and Surface Diffusion Coefficients of Volatile Organic Compounds Using Activated Carbon Adsorption Model and Small Column Test)

  • 이병호;이준희
    • 상하수도학회지
    • /
    • 제13권1호
    • /
    • pp.72-80
    • /
    • 1999
  • Separation of VOCs(Volatile Organic Compounds) in Water Using Activated Carbon is known to be effective. Activated Carbon has been and will be employed in many water treatment plants. Simplified plug flow homogeneous surface diffusion model(PFHSDM) has been used to predict adsorption of organic matter. Finite Element Method(FEM) was used to analyze the model. Out of water quality control substances, benzene, toluene and tetrachloroethylene were used in the small column test. Film diffusion coefficients and surface diffusion coefficients were obtained from the column test, and were compared with the modeling results. Mc Cune, Williamson, William and Kataoka model, were compared with film diffusion coefficients obtained in the test. McCune model was fitted best for those VOCs used in this experiment. Film diffusion coefficients of VOCs obtained were benzene 0.265 cm/min, toluene 0.348 cm/min and tetrachloroethylene 0.298 cm/min. Surface diffusion coefficients of VOCs obtained were benzene $6.36{\times}10^{-8}cm^2/min$, toluene $3.20{\times}10-8cm2/min$, and tetrachloruethylene $4.94{\times}10^{-8}cm^2/min$.

  • PDF

초소성 하이드로포밍과 확산 접합의 연속 공정을 위한 Ti-3Al-2.5V 튜브의 열처리 미세조직 (Heat-Treated Microstructures of Ti-3Al-2.5V Tube for the Successive Process of Superplastic Hydroforming and Diffusion Bonding)

  • 배근수;이상용
    • 열처리공학회지
    • /
    • 제29권2호
    • /
    • pp.56-61
    • /
    • 2016
  • Heating experiments using the Ti-3Al-2.5V tube materials in a vacuum furnace have been performed to investigate a pertinent range of working temperatures and holding times for the development of the successive or simultaneous operation of superplastic hydroforming and diffusion bonding. The specimens were heated at $820^{\circ}C$, $870^{\circ}C$ and $920^{\circ}C$ respectively. Holding times at each temperature were varied up to 4 hours. Holding times longer than 1 hour were selected to consider the diffusion bonding process after or during the hydroforming process in the superplastic state. Grain sizes were varied from $5.7{\mu}m$ of the as-received tube to $9.2{\mu}m$ after heating at $870^{\circ}C/4hours$. Homogeneus granular microstructures could be maintained up to $870^{\circ}C$, while microstructures at $920^{\circ}C$ showed no more granular type.

열간공구강 STD61의 이온질화 특성과 재가열에 의한 경도와 조직의 변화 (The Effect of Ion-Nitriding & Subsequent Reheating on Hardness and Microstructure of Hot work Tool Steel (STD 61))

  • 전해동
    • 열처리공학회지
    • /
    • 제9권2호
    • /
    • pp.130-138
    • /
    • 1996
  • It has been investigated that the ion nitriding effects of a STD61 steel in various time conditions of 3 to 9 hours, and the microstructure of compound and diffusion layers of the ion nitrided specimen for 6 hours and subsequently reheated for 1 hour at various temperatures of $400{\sim}800^{\circ}C$ As the nitriding time increased, the thickness of compound and diffusion layers was increased, but the hardness of surface was not considerably increased (Max Hv=1045 at 9hrs). Some of the nitrogen was denitrided out of the surfac and diffused into the core, and also the oxides ($Fe_3O_4$, $Fe_2O_3$) were formed on the surface of the specimen during reheating. The compound layer was partially decomposed at about $600^{\circ}C$ but the diffusion layer was increased up to $800^{\circ}C$. With increasing reheated temperture, the hardness of the surface was decreased, whereas the hardness depth of diffusion layer (0.25mm) was increased up to $600^{\circ}C$ more than that of ion nitrided (0.18mm). The blend-heat treated STD61 steel by ion nitriding is therefore expected to hold on the characteristics of ion nitriding up to $600^{\circ}C$.

  • PDF

7000계 Al 합금의 확산접합에 관한 연구 (A Syudy on the Diffusion Joining of 7000 Al Alloy)

  • 진영철;홍은성;김양수;이민상;유창영
    • 열처리공학회지
    • /
    • 제6권1호
    • /
    • pp.9-16
    • /
    • 1993
  • To investigate the properties of diffusion bonding of 7050 Al alloy, the diffusion bonding joints have been produced in self-made diffusion bonding hot-press which admits a defined application of the bonding pressure during the heating phase and also rapid cooling after the bonding process with various bonding condition. The strength of the bond increases with increasing the bonding time and temperature. Shear test at toom temperature showed that high strength up to 70% that of parent metal (320 MPa), 220 MPa for the specimen bonded 14 hr at $560^{\circ}C$, with 3 MPa. In this case, however, there is large deformation more than 20% reduction in thickness. The results were correlated with joint characteristics found by optical microstructure and by fractography by SEM. When the strengths of the bonds are more than 50% that of parent metal, a great deal of dimples stretched along the direction of shear stress are observed over the fractured surface of the bond. On the microstructure of the bond line, initial mophology of the bond line disapeared for the grain boundary migration with increasing the bonding time.

  • PDF

Ti-3Al-2.5V 튜브의 초소성 하이드로포밍과 확산접합으로 제조된 T형 구조물의 접합 특성 분석 (Analysis of Bonding Characteristics of a T-shape Structure Fabricated by Superplastic Hydroforming and Diffusion Bonding using two Ti-3Al-2.5V tubes)

  • 유영훈;이상용
    • 열처리공학회지
    • /
    • 제31권2호
    • /
    • pp.49-55
    • /
    • 2018
  • A T-shape structure was manufactured by the superplastic forming and diffusion bonding process using two Ti-3Al-2.5V alloy tubes. A Ti-3Al-2.5V tube was prepared for the hydroforming in the superplastic condition until it reaches a surface area such as a roof welded in the hole of another Ti-3Al-2.5V tube. Afterward, the superplastic forming process and the diffusion bonding process were carried out simultaneously until the appropriate bonding along the interface area of two Ti-3Al-2.5V tubes was obtained. The bonding qualities were different at each location of the entire interface according to the applied process conditions such as strain, pressure, temperature, holding time, geometries, etc. The microstructures of bonding interface have been observed to understand the characteristics of the applied processes in this study.

폐기물 처리시설에서의 악취 및 환기에 관한 연구 (A study on odor and ventilation in waste treatment facilities)

  • 서병석;전용한
    • Design & Manufacturing
    • /
    • 제14권2호
    • /
    • pp.28-33
    • /
    • 2020
  • Recently, as the income level and quality of life have improved, the desire for a pleasant environment has increased, and a deodorization plan is required through thorough prevention and diffusion of odorous substances in waste treatment facilities recognized as hateful facilities, appropriate collection, and selection of the right prevention facilities. In this study, a waste disposal facility was modeled and computerized analysis for odor and ventilation analysis was conducted. Numerical analysis of the waste treatment facility was performed at the size of the actual plant. CATIA V5 R16 for numerical model generation and ANSYS FLUENT V.13 for general purpose flow analysis were used as analysis tools. The average air-age of the internal was 329 seconds, and the air-flow velocity was 0.384m/s. The odor diffusion analysis inside the underground pump room showed congestion-free air circulation through streamline distribution and air-age distribution. This satisfies the ASHRAE criteria. In addition, the results of diffusion analysis of odorous substances such as ammonia, hydrogen sulfide, methyl mercaptan and dimethyl sulfide were all expected to satisfy the regulatory standards. Particularly in the case of the waste loading area, the air-flow velocity was 0.297m/s, and the result of meeting the regulatory standards with 0.167ppm of ammonia, 0.00548ppm of hydrogen sulfide, 0.003ppm of methyl mercaptan, and 0.003ppm of dimethyl sulfide was found.

Hot AC Anodising as a Cr(VI)-free Pre-treatment for Structural Bonding of Aluminium

  • Lapique, Fabrice;Bjorgum, Astrid;Johnsen, Bernt;Walmsley, John
    • 접착 및 계면
    • /
    • 제4권2호
    • /
    • pp.21-29
    • /
    • 2003
  • Hot AC anodising has been evaluated us pre-treatment for aluminium prior to structural adhesive bonding. Phosphoric and sulphuric acid hot AC anodising showed very promising adhesion promoter capabilities with durability comparable with the best standard DC anodising procedures. AC anodising does not required etching prior to anodising and offers u pre-treatment time down to 20 seconds. The interface/interphase between the aluminium substrate and the adhesive was investigated in order to get a better understanding of the involved adhesion mechanisms and to explain the long-tenn properties. The alkaline medium formed at the oxide layer/adhesive interface has been shown to induce a partial dissolution of the oxide layer leading to the formation of metallic ions which diffuse in the adhesive (EPMA measurements). The effect of diffusion of the Al ions on adhesion and joint durability is still uncertain but studies showed that pre-bond moisture affected the joints durability and to some extent the diffusion length. specially for DC anodised samples. So far no direct correlation could be established between the diffusion length d and the joints durability but new trials with better control over the elapsed time between bonding and adhesive curing are expected to help getting a better understanding of the involved mechanisms.

  • PDF

NH3분위기에서 Ti 질화에 의한 TiN 형성 (Formation of TiN by Ti Nitridation in NH3Ambient)

  • 이근우;박수진;유정주;권영호;김주연;전형탁;배규식
    • 한국전기전자재료학회논문지
    • /
    • 제17권2호
    • /
    • pp.150-155
    • /
    • 2004
  • This study attempts to form a TiN barrier layer against Cu diffusion by the easier and more convenient method. In this new approach, Ti was sputter-deposited, and nitrided by heat-treating in the NH$_3$ambient. Sheet resistance of as-deposited Ti was 20 Ω/$\square$, but increased to 195 Ω/$\square$ after the heat-treatment at 30$0^{\circ}C$, and lowered to 120 Ω/$\square$ after the heat-treatment at 50$0^{\circ}C$, and $600^{\circ}C$. AES results for these thin films confirmed that the atomic ratio of Ti and N was close to 1:1 at or above 40$0^{\circ}C$ heat-treatment. However, it was also found that excessive oxygen was contained in the TiN layer. To examine the barrier property against Cu diffusion, 100nm Cu was deposited on the TiN layer and then annealed at 40$0^{\circ}C$ for 40 min.. Cu remained at the surface without diffusing into the Si layer.

열처리 슬러리코팅법을 이용한 연료전지 가스확산층의 제조 (Fabrication of Gas Diffusion Layer for Fuel Cells Using Heat treatment Slurry Coating Method)

  • 김성진;박성범;박용일
    • 열처리공학회지
    • /
    • 제25권2호
    • /
    • pp.65-73
    • /
    • 2012
  • The Gas Diffusion Layer (GDL) of fuel cell, are required to provide both delivery of reactant gases to the catalyst layer and removal of water in either vapor or liquid form in typical PEMFCs. In this study, the fabrication of GDL containing Micro Porous Layer (MPL) made of the slurry of PVDF mixed with carbon black is investigated in detail. Physical properties of GDL containing MPL, such as electrical resistance, gas permeability and microstructure were examined, and the performance of the cell using developed GDL with MPL was evaluated. The results show that MPL with PVDF binder demonstrated uniformly distributed microstructure without large cracks and pores, which resulted in better electrical conductivity. The fuel cell performance test demonstrates that the developed GDL with MPL has a great potential due to enhanced mass transport property due to its porous structure and small pore size.