• Title/Summary/Keyword: diffuser

Search Result 790, Processing Time 0.028 seconds

Evaluation of Noise Reduction Performance of HVAC System for Ships (선박용 HVAC 시스템의 소음저감성능 평가)

  • Kim, Sang-Ryul;kim, Hyun-Sil;Kim, Jae-Seung;Kim, Bong-Ki;Lee, Sung-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.8
    • /
    • pp.497-503
    • /
    • 2010
  • In this paper, evaluation of noise reduction performance of HVAC system for ships by means of HVAC mock-up system is presented. Test is done for six different types of HVAC elements including room unit, silencer, etc. It is found that when diameter of silencer is small and air flow is large, flow noise degrades insertion loss. However, as diameter of silencer becomes larger, the effect of flow noise becomes smaller, and insertion loss up to 25 dB is measured. It is observed that insertion loss of diffuser type room unit is usually between zero and 10 dB, whereas that of the nozzle type room unit can be down to - 15 dB. In addition, it is shown that changing duct arrangement can reduce cabin noise by up to 2 dB, and providing same air flow to each room unit is crucial for generating less noise.

Temperature Analysis for the Point-Cell Source in the Vapor Deposition Process

  • Park, Jong-Wook;Kim, Sung-Cho;Hun Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1680-1688
    • /
    • 2004
  • The information indicating device plays an important part in the information times. Recently, the classical CRT (Cathod Ray Tube) display is getting transferred to the LCD (Liquid Crystal Display) one which is a kind of the FPDs (Flat Panel Displays). The OLED (Organic Light Emitting Diodes) display of the FPDs has many advantages for the low power consumption, the luminescence in itself, the light weight, the thin thickness, the wide view angle, the fast response and so on as compared with the LCD one. The OLED has lately attracted considerable attention as the next generation device for the information indicators. And also it has already been applied for the outside panel of a mobile phone, and its demand will be gradually increased in the various fields. It is manufactured by the vapor deposition method in the vacuum state, and the uniformity of thin film on the substrate depends on the temperature distribution in the point-cell source. This paper describes the basic concepts that are obtained to design the point-cell source using the computational temperature analysis. The grids are generated using the module of AUTOHEXA in the ICEM CFD program and the temperature distributions are numerically obtained using the STAR-CD program. The temperature profiles are calculated for four cases, i.e., the charge rate for the source in the crucible, the ratio of diameter to height of the crucible, the ratio of interval to height of the heating bands, and the geometry modification for the basic crucible. As a result, the blowout phenomenon can be shown when the charge rate for the source increases. The temperature variation in the radial direction is decreased as the ratio of diameter to height is decreased and it is suggested that the thin film thickness can be uniformed. In case of using one heating band, the blowout can be shown as the higher temperature distribution in the center part of the source, and the clogging can appear in the top end of the crucible in the lower temperature. The phenomena of both the blowout and the clogging in the modified crucible with the nozzle-diffuser can be prevented because the temperature in the upper part of the crucible is higher than that of other parts and the temperature variation in the radial direction becomes small.

Low Noise Vacuum Cleaner Design (저소음 청소기 개발)

  • Joo, Jae-Man;Lee, Jun-Hwa;Hong, Seun-Gee;Oh, Jang-Keun;Song, Hwa-Gyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.939-942
    • /
    • 2007
  • Vacuum cleaner is a close life product that can remove various dusts from our surroundings. However well vacuum cleaner clean our environments, many people are looking away from it, due to its loud noise. Its noise causes a big trouble in the usual life, for example, catch calls, TV watching and discussing etc. To reduce these inconveniences, noise reduction methods and systematic design of low noise vacuum cleaner are studied in this paper. At first, sound quality investigation is performed to get the noise level and quality that make people TV watching and catch calls available. Based on the European and domestic customer SQ survey result, sound power, peak noise level and target sound spectrum guideline are studied and introduced. As a second, precise product sound spectrums are designed into each part based on the sound quality result. Fan-motor, brush, mainbody, cyclone spectrums are decided to get the final target sound based on the contribution level. Fan-motor is the major noise source of vacuum cleaner. Specially, its peak sound, RPM peak and BPF Peak, cause the people nervous. To reduce these peak sounds, high rotating impeller and diffuser are focused due to its interaction. A lot of experimental and numerical tests, operation points are investigated and optimization of flow path area between diffusers is performed. As a bagless device, cyclones are one of the major noise sources of vacuum cleaner. To reduce its noise, previous research is used and adopted well. Brush is the most difficult part to reduce noise. Its noise sources are all comes from aero-acoustic phenomena. Numerical analysis helps the understanding of flow structure and pattern, and a lot of experimental test are performed to reduce the noise. Gaps between the carpet and brush are optimized and flow paths are re-designed to lower the noise. Reduction is performed with keeping the cleaning efficiency and handling power together and much reduction of noise is acquired. With all above parts, main-body design is studied. To do a systematic design, configuration design developments technique is introduced from airplane design and evolved with each component design. As a first configuration, fan-motor installation position is investigated and 10 configuration ideas are developed and tested. As a second step, reduced size and compressed configuration candidates are tested and evaluated by a lot of major factor. Noise, power, mass production availability, size, flow path are evaluated together. If noise reduction configuration results in other performance degrade, the noise reduction configuration is ineffective. As a third configuration, cyclones are introduced and the size is reduced one more time and fourth, fifth, sixth, seventh configuration are evolved with size and design image with noise and other performance indexes. Finally we can get a overall much noise level reduction configuration. All above investigations are adopted into vacuum cleaner design and final customer satisfaction tests in Europe are performed. 1st grade sound quality and lowest noise level of bagless vacuum cleaner are achieved.

  • PDF

Enhancement of the Performance a Centrifugal Compressor in an Automobile Turbocharger by Modifying the Circumferential Inlet Height of Volute (원주방향 볼류트 입구 높이를 수정한 자동차용 터보차저 원심압축기의 성능 향상)

  • Zhou, Tianjun;Lee, Geun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.115-120
    • /
    • 2014
  • To enhance the performance of an automobile turbocharger compressor, the circumferential inlet heights of the volute were modified and the flow field for the combined region of the diffuser and volute was numerically investigated using commercial software. Basically, a well-designed volute should have a high pressure recovery coefficient and a low loss coefficient for the total pressure. In this study, two circular volutes with the same cross sectional shape and tongue angle, but circumferentially different volute inlet heights, were selected. One volute had the middle inlet in the cross-section at the circumferential angle of $90^{\circ}$ but gradually lower inlet heights for the angles between $90^{\circ}$ to $360^{\circ}$ with respect to the cross sectional center of the volute, while maintaining the same height between the tangential line connecting the lowest positions of the cross section and the line connecting the volute inlets in the circumferential direction (case 1 volute). The other volute has an inlet height that is 2 mm lower than in case 1 volute such that the tongue section has a tangential inlet (case 2 volute). The results showed that the case 2 volute had a higher total pressure ratio because of its higher pressure recovery coefficient and higher isentropic efficiency, resulting from the lower loss coefficient along the circumferential position than the case 1 volute.

Oxidation of Phenol Using Ozone-containing Microbubbles Formed by Electrostatic Spray (전기장에 의해 생성된 미세기포를 이용한 페놀의 오존산화)

  • Shin, Won-Tae;Jung, Yoo-Jin;Sung, Nak-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1292-1297
    • /
    • 2005
  • The use of ozone in water and wastewater treatment systems has been known to be a process that is limited by mass transfer. The most effective way to overcome this limitation is to increase the interfacial area available for mass transfer by decreasing the size of the ozone gas bubbles that are dispersed in solution. Electrostatic spraying(ES) of ozone into water was investigated in this work as a method of increasing the rate of mass transfer of ozone into a solution and thereby increasing the rate of phenol oxidation. Results were obtained for ES at input power levels ranging from 0 to 4 kV and compared with two different pore-size bubble diffusers($10{\sim}15{\mu}m$ and $40{\sim}60{\mu}m$). It was determined that the rate of mass transfer could be increased by as much as 40% when the applied voltage was increased from 0 to 4 kV as a result of the smaller bubbles generated by ES. In addition, ES was shown to be more effective than the medium-pore-size($10{\sim}15{\mu}m$) bubble diffuser and the best results were achieved at low gas flow rates.

Plume Rise and Initial Dilution Determination Reflecting the Density Profile over Entire Water Column (해수 전체 컬럼에서 밀도 분포를 반영한 플룸 상승과 초기 희석도 결정)

    • Journal of Korean Port Research
    • /
    • v.11 no.2
    • /
    • pp.215-230
    • /
    • 1997
  • A number of ocean outfalls are located around coastal area over the United States and discharge primary treated effluent into deep water for efficient wastewater treatment. Two of them, the Sand Island and Honouliuli municipal wastewater outfalls, are located on the south coast of Oahu. There have been growing interests about the plume dynamics around the ocean outfalls since plume discharged from the multiport diffuser may have significant impacts on coastal communities and immediate consequence on public health. Among the studies of plume dynamics performed in the vicinity of both outfalls, Project MB-4 in the Mamala Bay Study recently made with the funding in the $ 9 million amount statistically dealt with the near-field behavior of the plumes at the Sand Island and Honouliuli outfalls. However, Project MB-4 predicted much higher surfacing frequency than the realistic value obtained by model studies by Oceanit Laboratories, Inc.. It is suggested that improvements should be made in the application of the plume model to more simulate the actual discharge characteristics and ocean conditions. In this study, it has been recommended that input parameters in plume models reflect realistic density profile over the entire water column since. in the previous Mamala Bay Study, the density profiles were measured at 5m depth increments extending from 13 to 63 m depth (the density profile on the upper portion of water column was not included, Roberts 1995). It is proved that the density stratification is the important parameter for the submergence of the plume. In this study, as one of the important parameters, plume rise and initial dilution reflecting the density profile over the entire water column have been taken into account for more reliable plume behavior description.

  • PDF

Evaluation of the Oxygen Transfer Parameters (α and F) of a Coarse Bubble Aeration System by Off-gas Column Test (Off-gas Column Test를 이용한 하수처리장 심층포기시스템의 산소전달 매개변수(α와 F)의 산정)

  • Kim, Chul Woong;Lee, Se Ho;Shin, Dong Rok;Lee, Ji Yong;Park, Jae Han;Ahn, Yoon Hee;Ko, Kwang Baik
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1119-1122
    • /
    • 2006
  • Aeration by using diffusers usually requires approximately 50~90% of the total electricity needed to operate WWTP (WasteWater Treatment Plant)s. Accurate evaluation of the oxygen transfer efficiency for an aeration system, and recommendation of a better alternative may help saving WWTP operational costs. Appropriate techniques and methods to achieve this purpose have not been introduced in Korea. In this study, in-process analysis was performed for a coarse bubble aeration system by the off-gas method to evaluate its applicability in Korea. To accomplish this analysis, an off-gas test, unsteady-state clean water test and steady-state off-gas column test was conducted and comparisons to other aeration systems were made. The ${\alpha}$ and the F estimated from the results of the unsteady-state clean water test and the steady-state off-gas column test were 0.61 and 0.90 respectively in a coarse bubble aeration system. The comparison of P.E tube diffusers laid out single spiral roll and ceramic dome diffusers laid out full floor coverage showed that the oxygen transfer efficiency of the coarse bubble aeration system was less than or similar to other aeration systems. But, airflow rates per unit area were 4~5 times greater than other aeration systems. In regards to the oxygen transfer efficiency for airflow rates per unit area, a retrofit to higher efficiency diffusers was urgently needed. This study showed proved that off-gas methods can apply to evaluate diffuser performances to estimate operating factors and to compare other aeration systems in Korea.

A Study on the Demonstration of Yellow Plume Elimination System from Combined Cycle Power Plant Using Liquid Injection System (액상 직분사 시스템을 이용한 복합화력 황연제거 실증 연구)

  • Lee, Seung-Jae;Kim, Younghee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.317-324
    • /
    • 2020
  • Combined cycle power plants (CCPP) that use natural gas as fuel are easier to start and stop, and have lower pollutant emissions, so their share of domestic power generation facilities is steadily increasing. However, CCPP have a high concentration of nitrogen dioxide (NO2) emission in the initial start-up and low-load operation region, which causes yellow plume and civil complaints. As a control technology, the yellow plume reduction system was developed and operated from the mid-2000s. However, this technology was unable to control the phenomenon due to insufficient preheating of the vaporization system for 10 to 20 minutes of the initial start-up. In this study, CFD analysis and demonstration tests were performed to derive a control technology by injecting a reducing agent directly into the gas turbine exhaust duct. CFD analysis was performed by classifying into 5 cases according to the exhaust gas condition. The RMS values of all cases were less than 15%, showing a good mixing. Based on this, the installation and testing of the demonstration facilities facilitated complete control of the yellow plume phenomenon in the initial start-up.

Performance of a Hollow Fiber Membrane Bioreactor for the Treatment of Gaseous Toluene (중공사막 결합형 생물반응기를 이용한 기체상 톨루엔 제거 특성 검토)

  • Son, Young-Gyu;Kim, Yong-Sik;Khim, Jee-Hyeong;Song, Ji-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.886-891
    • /
    • 2005
  • In this study, a novel bioreactor system using a submerged hollow fiber membrane module (so called hollow fiber membrane bioreactor, HFMB) was applied to investigate feasibility and biodegradation capacity of the system for the treatment of gaseous toluene. First an abiotic test was conducted to determine the mass transfer coefficient, showing the value was similar to that obtained from a diffuser system using fine bubbles. Second, in the presence of toluene-degrading microorganisms, the HFMB was operated at different inlet toluene loading rates of 50, 100, $500\;g/m^3/hr$, and overall removal efficiencies were maintained in the range of $70{\sim}80%$. In addition, elimination capacities(EC) were increased up to $800\;g/m^3/hr$, which was substantially higher than maximum ECs for toluene reported in the biofiltration literature. Consequently, the HFMB was considered as an alternative method over other conventional VOC-treating technologies.

TPH, $CO_2$ and VOCs Variation Characteristics of Diesel Contaminated Aquifer by In-situ Air Sparging (공기분사공정에 의한 유류오염대수층의 TPH, $CO_2$, VOCs 변화 특성)

  • Lee, Jun-Ho;Park, Kap-Song
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.18-27
    • /
    • 2006
  • Air Sparging (IAS, AS) is a ground-water remediation technique, in which organic contaminants are volatilized into air as they rise from saturated to vadose soil zone. This study was conducted to investigate the variation characteristics of TPH, VOCs and $CO_2$ for air sparging of diesel contaminated saturated soil. Initial TPH concentration was 10,000 mg/kg for saturated soil phase and 1,001 mg/L for soil aquifer phase. After 36 days of air sparging, the equilibrium temperature of 2-Dimension experiment system was $24.9{\pm}1.5^{\circ}C$. The saturated soil TPH concentration (in the C10 port close to air diffuser) was reduced to 66.0% of the initial value. The mass amount of $CO_2$ was 3,800 mg and 3,200 mg in air space (C70 port) and in unsaturated soil zone (C50 port), respectively. The VOCs production kinetic parameter was 0.164/day in the air space (C70 port) and 0.182/day in the unsaturated soils (C50 port).