• Title/Summary/Keyword: diffraction patterns

Search Result 877, Processing Time 0.031 seconds

A Study on Distribution of Mössbauer Spectroscopy in Al Doped Garnet (Al을 치환한 Garnet의 Mössbauer분포 함수 연구)

  • Min, Byoung-Ki;Kim, Sam-Jin;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • Al$\^$3+/ substituted garnet Y$_3$Fe$\_$5-x/Al$\_$x/O$\_$12/ (x=0.0, 0.25, 0.5, 0.75, 1.0) was fabricated by sol-gel method. The crystallographic and magnetic properties of Y$_3$Fe$\_$5-x/Al$\_$x/O$\_$12/ have been studied with Mossbauer spectroscopy, x-ray diffraction (XRD), thermogravimetry analysis (TGA), differential thermal analysis (DTA), and vibrating samples magnetometer (VSM). The crystal structure of Y$_3$Fe$\_$5/O$\_$12/ is found to be a cubic with the lattice constant a$\_$0/= 12.381$\pm$0.005 $\AA$. The lattice constants a$\_$0/ decreases linearly from 12.381 to 12.304 A as the Al concentration (x) increases from x=0.0 to 1.0. Mossbauer spectra of measured at Y$_3$Fe$\_$5-x/A1$\_$x/O$\_$12/ various absorber temperatures of 13 to 600 K. Mossbauer spectrum for x = 0.0 is consist of well resolved two sets of six line patterns. While with increasing Al concentration outer sextet patters, which is originating from octahedral sites, broadens widely. These phenomena are interpreted in terms of random probability distributions of Fe$\^$3+/ and Al$\^$3+/ in tetrahedral site.

Degradation of the Chlorothalonil by Functional Zeolite-KCIO3 Complex (기능성 Zeolite-KCIO3 복합체에 의한 Chlorothalonil의 분해)

  • Choi, Choong-Lyeal;Park, Man;Lee, Dong-Hoon;Lee, Byung-Mook;Rhee, In-Koo;Choi, Jyung;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.2
    • /
    • pp.111-116
    • /
    • 2004
  • Salt occlusion in Zeolite is a unique phenomenon that takes place only when the salt size is similar to the window size of host zeolite. $KCIO_3$-occluded Zeolite, as an environment-friendly oxidant, has a high potential for effective removal of various organic pollutants. This study was carried to investigate the characteristics and the removal kinetics of fungicide chlorothalonil by zeolite-$KCIO_3$ complex. About 10% of $KCIO_3$ was occluded in zeolite pores synthesized by salt-thermal method from fly ash, although the occlusion amount was relatively less compared to that of nitrate salts. By occlusion with $KCIO_3$, no remarkable changes were found in X-ray diffraction patterns of cancrinite, whereas some decrease of overall peak intensities was found with those of sodalite. Different releasing kinetics of $CIO_3^-$ ion were observed in distilled water and soil solution from zeolite-$KCIO_3$ complex. Two reactions, hydration and diffusion, seem to be related with the release of $KCIO_3$. Therefore, the release isotherm of $CIO_3^-$ ion well fitted to the power function model which indicate the release was made by hydration and diffusion. The removal of chlorothalonil by zeolite and $KCIO_3$ reached at reaction equilibrium within 6 hours by 18% and 47% respectively. However, the chlorothalonil removal by the zeolite-$KCIO_3$ complex increased slowly and steadily up to 92% in 96 hours. These findings suggested that zeolite-$KCIO_3$ complex could be applied for effective removal of organic contaminants in the soil and aqueous environment.

Plasma-Assisted Molecular Beam Epitaxy of InXGa1-XN Films on C-plane Sapphire Substrates (플라즈마분자선에피탁시법을 이용한 C-면 사파이어 기판 위질화인듐갈륨박막의 에피탁시 성장)

  • Shin, Eun-Jung;Lim, Dong-Seok;Lim, Se-Hwan;Han, Seok-Kyu;Lee, Hyo-Sung;Hong, Soon-Ku;Joeng, Myoung-Ho;Lee, Jeong-Yong;Yao, Takafumi
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.185-189
    • /
    • 2012
  • We report plasma-assisted molecular beam epitaxy of $In_XGa_{1-X}N$ films on c-plane sapphire substrates. Prior to the growth of $In_XGa_{1-X}N$ films, GaN film was grown on the nitride c-plane sapphire substrate by two-dimensional (2D) growth mode. For the growth of GaN, Ga flux of $3.7{\times}10^{-8}$ torr as a beam equivalent pressure (BEP) and a plasma power of 150 W with a nitrogen flow rate of 0.76 sccm were fixed. The growth of 2D GaN growth was confirmed by $in-situ$ reflection high-energy electron diffraction (RHEED) by observing a streaky RHEED pattern with a strong specular spot. InN films showed lower growth rates even with the same growth conditions (same growth temperature, same plasma condition, and same BEP value of III element) than those of GaN films. It was observed that the growth rate of GaN is 1.7 times higher than that of InN, which is probably caused by the higher vapor pressure of In. For the growth of $In_xGa_{1-x}N$ films with different In compositions, total III-element flux (Ga plus In BEPs) was set to $3.7{\times}10^{-8}$ torr, which was the BEP value for the 2D growth of GaN. The In compositions of the $In_xGa_{1-x}N$ films were determined to be 28, 41, 45, and 53% based on the peak position of (0002) reflection in x-ray ${\theta}-2{\theta}$ measurements. The growth of $In_xGa_{1-x}N$ films did not show a streaky RHEED pattern but showed spotty patterns with weak streaky lines. This means that the net sticking coefficients of In and Ga, considered based on the growth rates of GaN and InN, are not the only factor governing the growth mode; another factor such as migration velocity should be considered. The sample with an In composition of 41% showed the lowest full width at half maximum value of 0.20 degree from the x-ray (0002) omega rocking curve measurements and the lowest root mean square roughness value of 0.71 nm.

Structure and Electrochemical Characterization of LiNi0.5Mn0.3Co0.2O2 as the Cathode Material Synthesized by Simple-combustion Method (단순 연소법으로 합성한 LiNi0.5Mn0.3Co0.2O2 양극 활물질의 구조 분석 및 전기화학적 특성 연구)

  • Cho, Sung-Woo;Ju, Jeong-Hun;Ryu, Seong-Hyeon;Ryu, Kawng-Sun
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.264-269
    • /
    • 2010
  • $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ active material was prepared by simple-combustion method and investigated as the cathode material for li-ion battery. The structural characterization was analyzed by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), respectively. The XRD patterns of $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ sample was indicated a phase of layered hexagonal structure. The size of particles has not uniform diameters ranging from 100 to 300 nm. The electrochemical performance of the $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ was measured by Cyclic Voltammetry and galvanostatics. The $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ shows the discharge capacity of ~162 mAh/g in the range of 2.8 to 4.3 V at the first cycle.

Characterization of Layered Double Hydroxides(Mg-Al-$CO_3$ systems) and Rehydration Reaction of Their Calcined Products in Aqueous Chromate Solution (층상이중수산화물(Mg-Al-$CO_3$ 체계)의 물리 · 화학적 특성규명 및 소성된 시료의 크롬산이온 수용액에서 재수화반응)

  • Rhee, Seog Woo;Kang, Mun-Ja;Moon, Hichung
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.8
    • /
    • pp.627-634
    • /
    • 1995
  • Layered double hydroxides ($Mg-Al-CO_3$ systems, LDH), which are hydrotalcite-like anionic clay minerals, having different $Mg^{2+}\;to\;Al^{3+}$ ratio were synthesized by coprecipitation method. The subsequent products were characterized by the following methods; elemental analysis, X-ray powder diffraction, thermal analysis (DSC and TGA), FT-IR and $^{27}$Al-MAS NMR. X-ray powder patterns showed that the products formed were layered structure materials. Two heat absorption peaks were observed around 20 ∼280$^{\circ}C$ (surface water and interlayer water) and 280∼500$^{\circ}C$ (water from lattice hydroxide and carbon dioxide from interlayer carbonate) in DSC diagrams, and they were quantitatively analyzed by TGA diagrams (in case LDH4 16.2% and 28.6% respectively). FT-IR spectra indicate that the interlayer carbonate ions occupied symmetrical sites between two adjacent layers in a parallel direction. $^{27}$Al-MAS NMR spectra show only single resonance (8.6 ppm) of the octahedrally coordinated aluminum similar magnesium. When LDH4 was calcined at 560$^{\circ}C$ for 3 hours in air, its layered structure was destroyed giving a mixed metal oxide. However it readily became rehydrated in aqueous chromate solution to its original structure.

  • PDF

Synthesis of Borosilicate Zeotypes by Steam-assisted Conversion Method (수증기 쪼임법에 의한 제올라이트형 보로실리케이트 제조방법)

  • Mansour, R.;Lafjah, M.;Djafri, F.;Bengueddach, A.
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.2
    • /
    • pp.178-185
    • /
    • 2007
  • Intermediate pentasil borosilicate zeolite-like materials have been crystallized by a novel method named steam-assisted conversion, which involves vapor-phase transport of water. Indeed, amorphous powders obtained by drying Na2O.SiO2.B2O3.TBA2O gels of various compositions using different boron sources are transformed into crystalline borosilicate zeolite belonging to pentasil family structure by contact with vapors of water under hydrothermal conditions. Using a variant of this method, a new material which has an intermediate structure of MFI/MEL in the ratio 90:10 was crystallized. The results show that steam and sufficiently high pH in the reacting hydrous solid are necessary for the crystallization to proceed. Characterization of the products shows some specific structural aspects which may have its unique catalytic properties. X-ray diffraction patterns of these microporous crystalline borosilicates are subjected to investigation, then, it is shown that the product structure has good crystallinity and is interpreted in terms of regular stacking of pentasil layers correlated by inversion centers (MFI structure) but interrupted by faults consisting of mirror-related layers (MEL structure). The products are also characterized by nitrogen adsorption at 77 K that shows higher microporous volume (0.160 cc/g) than that of pure MFI phase (0.119 cc/g). The obtained materials revealed high surface area (~600 m2/g). The infrared spectrum reveals the presence of an absorption band at 900.75 cm-1 indicating the incorporation of boron in tetrahedral sites in the silicate matrix of the crystalline phase.

Magnetic Properties of Hard/Soft Nanocomposite Ferrite Synthesized by Self-Combustion Precursors (자전 연소 전구체로 합성한 나노 크기 경/연 복합페라이트의 자기 특성)

  • Oh, Young Woo;Ahn, Jong Gyeon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.3
    • /
    • pp.45-50
    • /
    • 2015
  • The goal of this research is the create novel magnets with no rare-earth contents, with larger energy product by comparison with currently used ferrites. For this purpose we developed nano-sized hard-type/soft-type composite ferrite in which high remanent magnetization (Mr) and high coercivity (Hc). Nano-sized Ba-ferrite, Ni-Zn ferrite and $BaFe_{12}O_{19}/Ni_{0.5}Zn_{0.5}Fe_2O_4$ composite ferrites were prepared by sol-gel combustion method by use of glicine-nitrate and citric acid. Nanocomposite ferrites were calcined at temperature range $700-900^{\circ}C$ for 1h. According to the X-ray diffraction patterns and FT-IR spectra, single phase of NiZn-ferrite and Ba-ferrite were detected and hard/soft nanocomposite ferrite was indicated to the coexistence of the magnetoplumbite-structural $BaFe_{12}O_{19}$ and spinel-structural $Ni_{0.5}Zn_{0.5}Fe_2O_4$ that agreed with the standard JCPDS 10-0325 data. The particle size of nanocomposite turn out to be less than 120 nm. The nanocomposite ferrite shows a single-phase magnetization behavior, implying that the hard magnetic phase and soft magnetic phase were well exchange-coupled. The specific saturation magnetization ($M_s$) of the nanocomposite ferrite is located between hard ($BaFe_{12}O_{19}$) and soft ferrite($Ni_{0.5}Zn_{0.5}Fe_2O_4$). The remanence (Mr) of nanocomposite ferrite is much higher than that of the individual $BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$ ferrite, and $(BH)_{max}$ is increased slightly.

Physicochemical Properties of Waxy Barley Starch (찰보리 전분(澱粉)의 이화학적(理化學的) 특성(特性))

  • Yoon, Gae-Soon;Kang, Ock-Joo;Kim, Hyong-Soo
    • Applied Biological Chemistry
    • /
    • v.27 no.2
    • /
    • pp.79-85
    • /
    • 1984
  • The physicochemical properties of starch isolated from two kinds of waxy barley were investigated. The average diameters of starch granules of Changyoung and Smire were 13.6 and 16.6 microns, respectively, and most of starch granules were round shape. X-ray diffraction patterns of two samples were A-types and amylose contents of two waxy barley starches were 4%, blue values and alkali numbers of Changyoung and Smire were 0.22 and 0.18, 5.2 and 4.0, raising powers of them were 167 and 173, respectively. The optical transmitance of 0.1% suspension of waxy barley starches increased rapidly from $51^{\circ}C\;to\;75^{\circ}C$. Amylogram data on 5% of Changyoung and Smire starch solutions showed the gelatinization temperature of 63 and $62^{\circ}C$, maximum peak hight of 920 and 900 B.U., respectively. Waxy barley starches had higher swelling powers than non waxy barley starch. The starch pastes prepared from waxy barleys retrograded much slower than that of non waxy barley.

  • PDF

Preparation and Photosensitivity of Ag-Multi Walled Carbon Nanotube-TiO2 Nano Composite (Ag-Multi walled carbon nanotube-TiO2 복합나노소재 제조 및 광감응성)

  • Kim, Sung-Pil;Kim, Jong-Oh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.2
    • /
    • pp.5-11
    • /
    • 2016
  • $MWCNT-TiO_2$ nano composites and $Ag-MWCNT-TiO_2$ nano composites were prepared from Multi-Walled Carbon NanoTube (MWCNT), titanium (IV) butoxide (TNB) solution and silver nitrate ($AgNO_3$) by the sol-gel method. The dispersion and structure of Ag in the synthesized composites was observed by Scanning Electron Microscopy (SEM) and Field Emission Transmission Electron Microscopy (FE-TEM). X-Ray Diffraction (XRD) patterns of the composites showed that the composites contained an anatase phase. The Energy Dispersive X-ray spectroscopy (EDX) showed the presence of C, O, Ti and Ag peaks. The $TiO_2$ particles were distributed uniformly in the MWCNT network, and Ag particles were virtually fixed on the surface of the tubes. Also decomposition of the methylene blue was investigated according to UV radiation times for study photocatalytic activity. $Ag-MWCNT-TiO_2$ nano composites show high photodegradation than $MWCNT-TiO_2$ nano composites. The results indicate that the high conductivity of Ag improved the photoactivity of the $MWCNT-TiO_2$ composite.

In Situ Monitoring of the MBE Growth of AlSb by Spectroscopic Ellipsometry

  • Kim, Jun-Yeong;Yun, Jae-Jin;Lee, Eun-Hye;Bae, Min-Hwan;Song, Jin-Dong;Kim, Yeong-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.342-343
    • /
    • 2013
  • AlSb is a promising material for optical devices, particularly for high-frequency and nonlinear-optical applications. And AlSb offers significant potential for devices such as quantum-well lasers, laser diodes, and heterojunction bipolar transistors. In this work we study molecular beam epitaxy (MBE) growth of an unstrained AISb film on a GaAs substrate and identify the real-time monitoring capabilities of in situ spectroscopic ellipsometry (SE). The samples were fabricated on semi-insulating (0 0 1) GaAs substrates using MBE system. A rotating sample stage ensured uniform film growth. The substrate was first heated to $620^{\circ}C$ under As2 to remove surface oxides. A GaAs buffer layer approximately 200 nm- thick was then grown at $580^{\circ}C$. During the temperature changing process from $580^{\circ}C$ to $530^{\circ}C$, As2 flux is maintained with the shutter for Ga being closed and the reflection high-energy electron diffraction (RHEED) pattern remaining at ($2{\times}4$). Upon reaching the preset temperature of $530^{\circ}C$, As shutter was promptly closed with Sb shutter open, resulting in the change of RHEED pattern from ($2{\times}4$) to ($1{\times}3$). This was followed by the growth of AlSb while using a rotating-compensator SE with a charge-coupled-device (CCD) detector to obtain real-time SE spectra from 0.74 to 6.48 eV. Fig. 1 shows the real time measured SE spectra of AlSb on GaAs in growth process. In the Fig. 1 (a), a change of ellipsometric parameter ${\Delta}$ is observed. The ${\Delta}$ is the parameter which contains thickness information of the sample, and it changes in a periodic from 0 to 180o with growth. The significant change of ${\Delta}$ at~0.4 min means that the growth of AlSb on GaAs has been started. Fig. 1b shows the changes of dielectric function with time over the range 0.74~6.48 eV. These changes mean phase transition from pseudodielectric function of GaAs to AlSb at~0.44 min. Fig. 2 shows the observed RHEED patterns in the growth process. The observed RHEED pattern of GaAs is ($2{\times}4$), and the pattern changes into ($1{\times}3$) with starting the growth of AlSb. This means that the RHEED pattern is in agreement with the result of SE measurements. These data show the importance and sensitivity of SE for real-time monitoring for materials growth by MBE. We performed the real-time monitoring of AlSb growth by using SE measurements, and it is good agreement with the results of RHEED pattern. This fact proves the importance and the sensitivity of SE technique for the real-time monitoring of film growth by using ellipsometry. We believe that these results will be useful in a number of contexts including more accurate optical properties for high speed device engineering.

  • PDF