• 제목/요약/키워드: differentiation therapy

검색결과 347건 처리시간 0.026초

Factors Affecting Primary Culture of Nuclear Transfer Blastocysts for Isolation of Embryonic Stem Cells in Miniature Pigs

  • Kim, Min-Jeong;Ahn, Kwang-Sung;Kim, Young-June;Shim, Ho-Sup
    • Reproductive and Developmental Biology
    • /
    • 제33권3호
    • /
    • pp.133-137
    • /
    • 2009
  • Pluripotent embryonic stem (ES) cells isolated from inner cell mass (ICM) of blastocyst-stage embryos are capable of differentiating into various cell lineages and demonstrate germ-line transmission in experimentally produced chimeras. These cells have a great potential as tools for transgenic animal production, screening of newly-developed drugs, and cell therapy. Miniature pigs, selectively bred pigs for small size, offer several advantages over large breed pigs in biomedical research including human disease model and xenotransplantation. In the present study, factors affecting primary culture of somatic cell nuclear transfer blastocysts from miniature pigs for isolation of ES cells were investigated. Formation of primary colonies occurred only on STO cells in human ES medium. In contrast, no ICM outgrowth was observed on mouse embryonic fibroblasts (MEF) in porcine ES medium. Plating intact blastocysts and isolated ICM resulted in comparable attachment on feeder layer and primary colony formation. After subculture of ES-like colonies, two putative ES cell lines were isolated. Colonies of putative ES cells morphologically resembled murine ES cells. These cells were maintained in culture up to three passages, but lost by spontaneous differentiation. The present study demonstrates factors involved in the early stage of nuclear transfer ES cell isolation in miniature pigs. However, long-term maintenance and characterization of nuclear transfer ES cells in miniature pigs are remained to be done in further studies.

Two Korean girls with complete androgen insensitivity syndrome diagnosed in infancy

  • Heo, You Jung;Ko, Jung Min;Lee, Young Ah;Shin, Choong Ho;Yang, Sei Won;Kim, Man Jin;Park, Sung Sub
    • Annals of Pediatric Endocrinology and Metabolism
    • /
    • 제23권4호
    • /
    • pp.220-225
    • /
    • 2018
  • Androgen insensitivity syndrome (AIS) is a rare genetic disease caused by various abnormalities in the androgen receptor (AR). The AR is an essential steroid hormone receptor that plays a critical role in male sexual differentiation and development and preservation of the male phenotype. Mutations in the AR gene on the X chromosome cause malfunction of the AR so that a 46,XY karyotype male has some physical characteristics of a woman or a full female phenotype. Depending on the phenotype, AIS can be classified as complete, partial or mild. Here, we report 2 cases of complete AIS in young children who showed complete sex reversal from male to female as a result of AR mutations. They had palpable inguinal masses and normal female external genitalia, a blind-end vagina and absent $M{\ddot{u}}llerian$ duct derivatives. They were both 46,XY karyotype and AR gene analysis demonstrated pathologic mutations in both. Because AIS is inherited in an X-linked recessive manner, we performed genetic analysis of the female family members of each patient and found the same mutation in the mothers of both patients and in the female sibling of case 2. Gonadectomy was performed in both patients to avoid the risk of malignancy in the undescended testicles, and estrogen replacement therapy is planned for their adolescence. Individuals with complete AIS are usually raised as females and need appropriate care.

하이드로젤 지지체 기반 3차원 환경에서 개 간엽줄기세포의 분화능 분석 (Differentiation potential of canine mesenchymal stem cells on hydrogel scaffold-based three-dimensional environment)

  • 구나연;박미정;이지현;변정수;정다운;조인수;차상호
    • 대한수의학회지
    • /
    • 제58권4호
    • /
    • pp.211-217
    • /
    • 2018
  • Mesenchymal stem cells (MSCs) are useful candidates for tissue engineering and cell therapy. Physiological cell environment not only connects cells to each other, but also connects cells to the extracellular matrix that provide mechanical support, thus exposing the entire cell surface and activating signaling pathways. Hydrogel is a polymeric material that swells in water and maintains a distinct 3-dimensional (3D) network structure by cross linking. In this study, we investigated the optimized cellular function for canine adipose tissue-derived MSCs (cAD-MSCs) using hydrogel. We observed that the expression levels of Ki67 and proliferating cell nuclear antigen, which are involved in cell proliferation and stemness, were increased in transwell-hydrogel (3D-TN) compared to the transwell-normal (TN). Also, transforming growth factor-${\beta}1$ and SOX9, which are typical bone morphogenesis-inducing factors, were increased in 3D-TN compared to the TN. Collagen type II alpha 1, which is a chondrocyte-specific marker, was increased in 3D-TN compared to the TN. Osteocalcin, which is a osteocyte-specific marker, was increased in 3D-TN compared to the TN. Collectively, preconditioning cAD-MSCs via 3D culture systems can enhance inherent secretory properties that may improve the potency and efficacy of MSCs-based therapies for bone regeneration process.

Current Status of Stem Cell Treatment for Type I Diabetes Mellitus

  • Kakkar, Anupama;Sorout, Ashima;Tiwari, Mahak;Shrivastava, Pallavi;Meena, Poonam;Kumar Saraswat, Sumit;Srivastava, Supriya;Datt, Rajan;Pandey, Siddharth
    • Tissue Engineering and Regenerative Medicine
    • /
    • 제15권6호
    • /
    • pp.699-709
    • /
    • 2018
  • BACKGROUND: Diabetes mellitus is a major health concern in current scenario which has been found to affect people of almost all ages. The disease has huge impact on global health; therefore, alternate methods apart from insulin injection are being explored to cure diabetes. Therefore, this review mainly focuses on the current status and therapeutic potential of stem cells mainly mesenchymal stem cells (MSCs) for Type 1 diabetes mellitus in preclinical animal models as well as humans. METHODS: Current treatment for Type 1 diabetes mellitus mainly includes use of insulin which has its own limitations and also the underlying mechanism of diseases is still not explored. Therefore, alternate methods to cure diabetes are being explored. Stem cells are being investigated as an alternative therapy for treatment of various diseases including diabetes. Few preclinical studies have also been conducted using undifferentiated MSCs as well as in vitro MSCs differentiated into ${\beta}$ islet cells. RESULTS: These stem cell transplant studies have highlighted the benefits of MSCs, which have shown promising results. Few human trials using stem cells have also affirmed the potential of these cells in alleviating the symptoms. CONCLUSION: Stem cell transplantation may prove to be a safe and effective treatment for patients with Type 1 diabetes mellitus.

Nanoengineered, cell-derived extracellular matrix influences ECM-related gene expression of mesenchymal stem cells

  • Ozguldez, Hatice O.;Cha, Junghwa;Hong, Yoonmi;Koh, Ilkyoo;Kim, Pilnam
    • 생체재료학회지
    • /
    • 제22권4호
    • /
    • pp.337-345
    • /
    • 2018
  • Background: Human mesenchymal stem cells (hMSCs) are, due to their pluripotency, useful sources of cells for stem cell therapy and tissue regeneration. The phenotypes of hMSCs are strongly influenced by their microenvironment, in particular the extracellular matrix (ECM), the composition and structure of which are important in regulating stem cell fate. In reciprocal manner, the properties of ECM are remodeled by the hMSCs, but the mechanism involved in ECM remodeling by hMSCs under topographical stimulus is unclear. In this study, we therefore examined the effect of nanotopography on the expression of ECM proteins by hMSCs by analyzing the quantity and structure of the ECM on a nanogrooved surface. Methods: To develop the nanoengineered, hMSC-derived ECM, we fabricated the nanogrooves on a coverglass using a UV-curable polyurethane acrylate (PUA). Then, hMSCs were cultivated on the nanogrooves, and the cells at the full confluency were decellularized. To analyze the effect of nanotopography on the hMSCs, the hMSCs were re-seeded on the nanoengineered, hMSC-derived ECM. Results: hMSCs cultured within the nano-engineered hMSC-derived ECM sheet showed a different pattern of expression of ECM proteins from those cultured on ECM-free, nanogrooved surface. Moreover, hMSCs on the nano-engineered ECM sheet had a shorter vinculin length and were less well-aligned than those on the other surface. In addition, the expression pattern of ECM-related genes by hMSCs on the nanoengineered ECM sheet was altered. Interestingly, the expression of genes for osteogenesis-related ECM proteins was downregulated, while that of genes for chondrogenesis-related ECM proteins was upregulated, on the nanoengineered ECM sheet. Conclusions: The nanoengineered ECM influenced the phenotypic features of hMSCs, and that hMSCs can remodel their ECM microenvironment in the presence of a nanostructured ECM to guide differentiation into a specific lineage.

PSME4 determines mesenchymal stem cell fate towards cardiac commitment through YAP1 degradation

  • Mira Kim;Yong Sook Kim;Youngkeun Ahn;Gwang Hyeon Eom;Somy Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권4호
    • /
    • pp.407-416
    • /
    • 2023
  • The regeneration of myocardium following acute circulatory events remains a challenge, despite numerous efforts. Mesenchymal stem cells (MSCs) present a promising cell therapy option, but their differentiation into cardiomyocytes is a time-consuming process. Although it has been demonstrated that PSME4 degrades acetyl-YAP1, the role of PSME4 in the cardiac commitment of MSCs has not been fully elucidated. Here we reported the novel role of PSME4 in MSCs cardiac commitment. It was found that overnight treatment with apicidin in primary-cultured mouse MSCs led to rapid cardiac commitment, while MSCs from PSME4 knock-out mice did not undergo this process. Cardiac commitment was also observed using lentivirus-mediated PSME4 knockdown in immortalized human MSCs. Immunofluorescence and Western blot experiments revealed that YAP1 persisted in the nucleus of PSME4 knockdown cells even after apicidin treatment. To investigate the importance of YAP1 removal, MSCs were treated with shYAP1 and apicidin simultaneously. This combined treatment resulted in rapid YAP1 elimination and accelerated cardiac commitment. However, overexpression of acetylation-resistant YAP1 in apicidin-treated MSCs impeded cardiac commitment. In addition to apicidin, the universal effect of histone deacetylase (HDAC) inhibition on cardiac commitment was confirmed using tubastatin A and HDAC6 siRNA. Collectively, this study demonstrates that PSME4 is crucial for promoting the cardiac commitment of MSCs. HDAC inhibition acetylates YAP1 and facilitates its translocation to the nucleus, where it is removed by PSME4, promoting cardiac commitment. The failure of YAP1 to translocate or be eliminated from the nucleus results in the MSCs' inability to undergo cardiac commitment.

Insulin-like growth factor-I 이 치주인대세포의 생물학적 활성도에 미치는 영향에 대한 연구 (THE STUDY ON THE EFFECTS OF THE INSULIN-LIKE GROWTH FACTOR-I ON THE BIOLOGICAL ACTIVITY OF THE HUMAN PERIODONTAL LIGAMENT CELLS)

  • 김성진;이재목;서조영
    • Journal of Periodontal and Implant Science
    • /
    • 제24권2호
    • /
    • pp.219-237
    • /
    • 1994
  • 치주조직재생에 중요하게 생각되는 요건으로는 치근면의 상태, 전구세포의 증식, 치유 부의 상피조직배제, 치유부의 안정화를 들 수 있으며 이중 가장 중요한 요건중의 하나가 치유부에 치주조직재생을 도모할 수 있는 전구 세포가 실수부로 이주하여 부착과 증식, 분화를 통하여 교원질섬유를 포함한 결체조직의 부착과 백악질, 골조직을 재형성하는 것이다. 최근에 이러한 전구세포들을 자극하고 원치 하는 세포들을 저지하기 위한 방법으로 성장 인자에 대한 연구가 활발히 진행되고 있다 골조직을 조절하는 인자로 알려진 인슐린유사성장인자- I (Insulin-like growth factor-I)는 폴리펩타이드계 성장인자로서 골세포의 증식, 기질합성 등을 촉진시킨다고 보고되고 있으나, 치주조직 재생에 대한 IGF- I 의 영향을 잘 규명되어 있지 않으므로 배양된 치주인대세포에 IGF- I 을 농도별로 주입하여 세포의 증식능, 교원질 및 단백질 합성능, 알카린인산효소활성도를 측정해 보므로써 IGF- I 이 치주인대세포의 활성에 미치는 영향을 알아보고자 하였다. 교정치료를 위해 내원한 환자로부터 건강한 제일소구치를 발거하여 치주인대세포를 분리, 배양하여 IGF- I 을 주입시키지 않은 군을 대조군으로 하고, IGF- I 을 각각 0.1, 1, 10, 100 ng//ml로 주입시킨 군을 실험군으로 하여 DNA합성능, 총단백질과 교원질 합성능 및 알카린인산효소활성도를 측정하여 다음과 같은 결과를 얻었다. DNA 합성능에 미치는 IGF- I 의 효과는 농도가 증가함에 따라 0.1ng/ml를 제외하고는 DNA 합성능이 증가하는 경향을 보였고, 대조군에 비해 10, 100ng/ml투여군에서 통계적으로 유의한 차이(P<0/05)를 나타내었다. 치주인대세포의 총단백질 합성양에 미치는 IGF- I 의 효과는 농도가 증가함에 따라 총단백질 합성양이 증가하는 경향을 보였으며, 대조군에 비해 1, 10, 100ng/ml 투여군에서 통계학적으로 유의한 차이(P<0.001)를 나타내었다. 총단백질을 교원질(collagenase digestible protein : CDP)과 비교원성 단백질(non-collagenous protein : NCP)로 분류하여 비교하였을때 IGF- I 의 농도가 증가함에 따라 비교원성 단백질 합성양과 교원질 합성양이 증가하는 경향을 보였으며, 비교원성 단백질 합성양이 교원질 합성양보다 약간 높게 나타났고, 대조군에 비해 1, 10, 100ng/ml 투여군에서 통계적으로 유의한 차이(P<0.05, P<0.001)를 나타내었다. 총단백질에 대한 교원질합성의 상대적 비율은 농도가 증가함에 따라 각 군당 별차이를 보이지 않았으며, 대조군에 비해 통계적으로 유의한 차이 (P>0.05)를 나타내지 않았다. 알카린인산효소활성도에 미치는 IGF- I 의 효과는 모든군에서 7일째보다 14일째에서 약간 높은 알카린인산효소활성도롤 나타내었으며, 7, 14일 모두 농도가 증가함에 따라 효소활성도가 증가하였으며, 7일째 대조군에 비해 100ng/ml 투여군에서 통계적으로 유의한 차이(p<0.05)를 나타내었다.

  • PDF

뇌종양의 재발과 방사선 괴사의 감별을 위한 탈륨 SPECT의 역할 (The Role of T1-201 Brain SPECT in the Differentiating Recurrent Tumor from Radiation Necrosis)

  • 원경숙;류진숙;문대혁;양승오;이희경;이정교;권병덕
    • 대한핵의학회지
    • /
    • 제30권4호
    • /
    • pp.476-483
    • /
    • 1996
  • 임상적으로 뇌종양과 방사선 치료 후 발생한 괴사의 감별은 매우 중요한 문제이다. 그러나 임상 증상이나 방사선학적 소견으로 양자를 감별하는 것은 매우 어렵다. 이에 저자 등은 방사선 치료 후 재발과 괴사를 감별하는데 있어 T1-201 SPECT의 역할을 알아보고자 하였다. 대상은 뇌종양으로 진단 받고 개두술 및 방사선 치료나 감마 나이프 수술을 받은 후 증상의 악화로 내원하여 T1-201 SPECT를 시행한 환자 중 조직학적으로 확진된 20명으로 하였다. T1-201 SPECT는 일단 육안적으로 비정상적 탈륨 섭취 여부를 판별한 다음 비정상적 탈륨 섭취가 있는 경우에 한하여 탈륨 섭취 지수를 구하여 2.5이상인 경우를 종양의 재발로 간주하였으며, 병리조직 소견과 비교하였다. 재수술 또는 조직검사상 20명중 16명이 재발 또는 양성종양의 악성전환으로 나타났으며, T1-201 SPECT 상에서는 18명에서 2.5이상의 높은 탈륨 섭취 지수로 종양 양성이었다. 17예에서 일치를 보였는데 진양성 15예, 진음성 2예였고, 3예에서 불일치를 보였는데 모두 위양성이었다. 조직소견을 기준으로한 예민도, 특이도, 양성 예측율 및 음성 예측율은 각각 100%, 40%, 83%, 100%였다. 결론적으로 뇌종양의 방사선 치료 후 재발과 괴사를 감별하는데 있어 T1-201 SPECT는 높은 예민도와 음성 예측율을 갖는 유용한 검사이다. 상대적으로 낮은 특이도는 조직병리 검사를 시행함에 있어 표본선택오차와 임상가의 검사의뢰 편견이 있을 수 있음을 고려하여 좀 더 많은 수의 환자를 대상으로 한 연구가 있어야 할 것이다.

  • PDF

Stem Cell Biology, 최근의 진보 (Recent Advancement in the Stem Cell Biology)

  • 한창열
    • Journal of Plant Biotechnology
    • /
    • 제33권3호
    • /
    • pp.195-207
    • /
    • 2006
  • Stem cells are the primordial, initial cells which usually divide asymmetrically giving rise to on the one hand self-renewals and on the other hand progenitor cells with potential for differentiation. Zygote (fertilized egg), with totipotency, deserves the top-ranking stem cell - he totipotent stem cell (TSC). Both the ICM (inner cell mass) taken from the 6 days-old human blastocyst and ESC (embryonic stem cell) derived from the in vitro cultured ICM have slightly less potency for differentiation than the zygote, and are termed pluripotent stem cells. Stem cells in the tissues and organs of fetus, infant, and adult have highly reduced potency and committed to produce only progenitor cells for particular tissues. These tissue-specific stem cells are called multipotent stem cells. These tissue-specific/committed multipotent stem cells, when placed in altered environment other than their original niche, can yield cells characteristic of the altered environment. These findings are certainly of potential interest from the clinical, therapeutic perspective. The controversial terminology 'somatic stem cell plasticity' coined by the stem cell community seems to have been proved true. Followings are some of the recent knowledges related to the stem cell. Just as the tissues of our body have their own multipotent stem cells, cancerous tumor has undifferentiated cells known as cancer stem cell (CSC). Each time CSC cleaves, it makes two daughter cells with different fate. One is endowed with immortality, the remarkable ability to divide indefinitely, while the other progeny cell divides occasionally but lives forever. In the cancer tumor, CSC is minority being as few as 3-5% of the tumor mass but it is the culprit behind the tumor-malignancy, metastasis, and recurrence of cancer. CSC is like a master print. As long as the original exists, copies can be made and the disease can persist. If the CSC is destroyed, cancer tumor can't grow. In the decades-long cancer therapy, efforts were focused on the reducing of the bulk of cancerous growth. How cancer therapy is changing to destroy the origin of tumor, the CSC. The next generation of treatments should be to recognize and target the root cause of cancerous growth, the CSC, rather than the reducing of the bulk of tumor, Now the strategy is to find a way to identify and isolate the stem cells. The surfaces of normal as well as the cancer stem cells are studded with proteins. In leukaemia stem cell, for example, protein CD 34 is identified. In the new treatment of cancer disease it is needed to look for protein unique to the CSC. Blocking the stem cell's source of nutrients might be another effective strategy. The mystery of sternness of stem cells has begun to be deciphered. ESC can replicate indefinitely and yet retains the potential to turn into any kind of differentiated cells. Polycomb group protein such as Suz 12 repress most of the regulatory genes which, activated, are turned to be developmental genes. These protein molecules keep the ESC in an undifferentiated state. Many of the regulator genes silenced by polycomb proteins are also occupied by such ESC transcription factors as Oct 4, Sox 2, and Nanog. Both polycomb and transcription factor proteins seem to cooperate to keep the ESC in an undifferentiated state, pluripotent, and self-renewable. A normal prion protein (PrP) is found throughout the body from blood to the brain. Prion diseases such as mad cow disease (bovine spongiform encephalopathy) are caused when a normal prion protein misfolds to give rise to PrP$^{SC}$ and assault brain tissue. Why has human body kept such a deadly and enigmatic protein? Although our body has preserved the prion protein, prion diseases are of rare occurrence. Deadly prion diseases have been intensively studied, but normal prion problems are not. Very few facts on the benefit of prion proteins have been known so far. It was found that PrP was hugely expressed on the stem cell surface of bone marrow and on the cells of neural progenitor, PrP seems to have some function in cell maturation and facilitate the division of stem cells and their self-renewal. PrP also might help guide the decision of neural progenitor cell to become a neuron.

인간 배아줄기세포로의 eGFP 유전자 도입 및 특성 분석 (Transduction of eGFP Gene to Human Embryonic Stem Cells and Their Characterization)

  • 김윤영;구승엽;박용빈;오선경;문신용;최영민
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제36권4호
    • /
    • pp.283-292
    • /
    • 2009
  • 목 적: 인간 배아줄기세포 (human embryonic stem cells; hESCs)는 체외에서 오랫동안 증식할 수 있으며, 모든 종류의 세포로 분화할 수 있는 능력을 가진 세포이다. 그러므로, 인간 배아줄기세포는 세포치료의 세포공급원의 역할을 할 수 있을 것으로 기대를 모으고 있다. 인간 배아줄기세포로의 외래 유전자의 도입은 분화경로 규명 및 특정 유전자의 기능 규명 등에 효과적으로 이용될 수 있다. 본 연구에서는 렌티 바이러스를 이용하여 eGFP 유전자를 XY와 XX 핵형을 가진 인간 배아줄기세포주에 도입하고자 하였다. 연구방법: 렌티 바이러스를 이용하여 eGFP 유전자를 인간 배아줄기세포에 도입하였다. 도입된 eGFP의 발현은 형광현미경을 이용하여 확인하였으며, 유세포 분석을 통하여 eGFP 발현세포의 비율을 분석하였다. 또한, eGFP가 도입된 인간 배아줄기세포에서 표지인자인 Oct4, SSEA4 및 Tra-1-81의 발현을 확인하였으며, 배아체의 형성 여부를 확인하여 특성분석을 수행하였다. 결 과: eGFP는 인간 배아줄기세포로 성공적으로 도입되었다. eGFP의 발현은 40 계대 이상 안정적으로 지속되었다. eGFP를 발현하는 인간 배아줄기세포는 eGFP 도입 후에도, 배아줄기세포의 특성을 유지하고 있음이 확인되었다. 또한, 자연적 분화 동안 발현이 감소하는 현상이 관찰되었다. 결 론: 본 연구에서는 렌티 바이러스를 이용하여 eGFP가 도입된 인간 배아줄기세포주를 확립하였으며, 그 특성이 유지되고 있음을 확인하였다. 표지 유전자가 도입된 인간 배아줄기세포주는 분화 및 다른 연구에 활용될 수 있을 것으로 기대된다.