• Title/Summary/Keyword: differentially expressed gene

Search Result 566, Processing Time 0.029 seconds

Comparison of Univariate and Multivariate Gene Set Analysis in Acute Lymphoblastic Leukemia

  • Soheila, Khodakarim;Hamid, AlaviMajd;Farid, Zayeri;Mostafa, Rezaei-Tavirani;Nasrin, Dehghan-Nayeri;Syyed-Mohammad, Tabatabaee;Vahide, Tajalli
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1629-1633
    • /
    • 2013
  • Background: Gene set analysis (GSA) incorporates biological with statistical knowledge to identify gene sets which are differentially expressed that between two or more phenotypes. Materials and Methods: In this paper gene sets differentially expressed between acute lymphoblastic leukaemia (ALL) with BCR-ABL and those with no observed cytogenetic abnormalities were determined by GSA methods. The BCR-ABL is an abnormal gene found in some people with ALL. Results: The results of two GSAs showed that the Category test identified 30 gene sets differentially expressed between two phenotypes, while the Hotelling's $T^2$ could discover just 19 gene sets. On the other hand, assessment of common genes among significant gene sets showed that there were high agreement between the results of GSA and the findings of biologists. In addition, the performance of these methods was compared by simulated and ALL data. Conclusions: The results on simulated data indicated decrease in the type I error rate and increase the power in multivariate (Hotelling's $T^2$) test as increasing the correlation between gene pairs in contrast to the univariate (Category) test.

Genotoxicity and Identification of Differentially Expressed Genes of Formaldehyde in human Jurkat Cells

  • Kim, Youn-Jung;Kim, Mi-Soon;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.4
    • /
    • pp.230-236
    • /
    • 2005
  • Formaldehyde is a common environmental contaminant found in tobacco smoke, paint, garments, diesel and exhaust, and medical and industrial products. Formaldehyde has been considered to be potentially carcinogenic, making it a subject of major environmental concern. However, only a little information on the mechanism of immunological sensitization and asthma by this compound has been known. So, we performed with Jurkat cell line, a human T lymphocyte, to assess the induction of DNA damage and to identify the DEGs related to immune response or toxicity by formaldehyde. In this study, we investigated the induction of DNA single strand breaks by formaldehyde using single cell gel electrophoresis assay (comet assay). And we compared gene expression between control and formaldehyde treatment to identify genes that are specifically or predominantly expressed by employing annealing control primer (ACP)-based $GeneFishing^{TM}$ method. The cytotoxicity ($IC_{30}$) of formaldehyde was determined above the 0.65 mM in Jurkat cell in 48 h treatment. Based on the $IC_{30}$ value from cytotoxicity test, we performed the comet assay in this concentration. From these results, 0.65 mM of formaldehyde was not revealed significant DNA damages in the absence of S-9 metabolic activation system. And the one differentially expressed gene (DEG) of formaldehyde was identified to zinc finger protein 292 using $GeneFishing^{TM}$ method. Through further investigation, we will identify more meaningful and useful DEGs on formaldehyde, and then can get the information on the associated mechanism and pathway with immune response or other toxicity by formaldehyde exposure.

Functional Classification of Gene Expression Profiles During Differentiation of Mouse Embryonic Cells on Monolayer Culture

  • Leem, Sun-Hee;Ahn, Eun-Kyung;Heo, Jeong-Hoon
    • Animal cells and systems
    • /
    • v.13 no.2
    • /
    • pp.235-245
    • /
    • 2009
  • Embryonic stem (ES) cells have a capability to generate all types of cells. However, the mechanism by which ES cells differentiate into specific cell is still unclear. Using microarray technology, the differentiation process in mouse embryonic stem cells was characterized by temporal gene expression changes of mouse ES cells during differentiation in a monolayer culture. A large number of genes were differentially regulated from 1 day to 14 days, and less number of genes were differentially expressed from 14 days to 28 days. The number of up-regulated genes was linearly increased throughout the 28 days of in vitro differentiation, while the number of down-regulated genes reached the plateau from 14 days to 28 days. Most differentially expressed genes were functionally classified into transcriptional regulation, development, extra cellular matrix (ECM),cytoskeleton organization, cytokines, receptors, RNA processing, DNA replication, chromatin assembly, proliferation and apoptosis related genes. While genes encoding ECM proteins were up-regulated, most of the genes related to proliferation, chromatin assembly, DNA replication, RNA processing, and cytoskeleton organization were down-regulated at 14 days. Genes known to be associated with embryo development or transcriptional regulation were differentially expressed mostly after 14 days of differentiation. These results indicate that the altered expression of ECM genes constitute an early event during the spontaneous differentiation, followed by the inhibition of proliferation and lineage specification. Our study might identify useful time-points for applying selective treatments for directed differentiation of mouse ES cells.

Analysis of Gene Expression in 4,4'-Methylenedianiline-induced Acute Hepatotoxicity

  • Oh, Jung-Hwa;Yoon, Hea-Jin;Lim, Jung-Sun;Park, Han-Jin;Cho, Jae-Woo;Kwon, Myung-Sang;Yoon, Seok-Joo
    • Toxicological Research
    • /
    • v.25 no.2
    • /
    • pp.85-92
    • /
    • 2009
  • 4,4'-Methylenedianiline (MDA) is an aromatic amine that is widely used in the industrial synthetic process. Genotoxic MDA forms DNA adducts in the liver and is known to induce liver damage in human and rats. To elucidate the molecular mechanisms associated with MDA-induced hepatotoxicity, we have identified genes differentially expressed by microarray approach. BALB/c male mice were treated once daily with MDA (20 mg/kg) up to 7 days via intraperitoneal injection (i.p.) and hepatic damages were revealed by histopathological observation and elevation of serum marker enzymes such as AST, ALT, ALP, cholesterol, DBIL, and TBIL. Microarray analysis showed that 952 genes were differentially expressed in the liver of MDA-treated mice and their biological functions and canonical pathways were further analyzed using Ingenuity Pathways Analysis (IPA). Toxicological functional analysis showed that genes related to hepatotoxicity such hyperplasia/hyperproliferation (Timp1), necrosis/cell death (Cd14, Mt1f, Timp1, and Pmaip1), hemorrhaging (Mt1f), cholestasis (Akr1c3, Hpx, and Slc10a2), and inflammation (Cd14 and Hpx) were differentially expressed in MDA-treated group. This gene expression profiling should be useful for elucidating the genetic events associated with aromatic amine-induced hepatotoxicity and for discovering the potential biomarkers for hepatotoxicity.

Differentially Expressed Genes in Marine Medaka Fish (Oryzias javanicus) Exposed to Cadmium

  • Woo, Seon-Ock;Son, Sung-Hee;Park, Hong-Seog;Vulpe, Chris D.;Ryu, Jae-Chun;Yum, Seung-Shic
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.293-299
    • /
    • 2008
  • To screen the differentially expressed genes in cadmuim-exposed marine medaka fish (Oryzias javanicus), a candidate marine test fish for ecological toxicity, the differential display polymerase chain reaction (DD-PCR) was carried out, since the genome-wide gene expression data are not available in this fish species yet. A total of 35 clones were isolated from cadmium-exposed fish and their nucleotide sequences were analyzed. The differentially expressed gene candidates were categorized to response to stimulus (3); ion binding (3); DNA binding (1); protein binding (6); carbohydrate binding (1); metabolic process (4); biological regulation (3); cellular process (2); protein synthesis (2); catalytic activity (2); sense of sight (1); immune (1); neurohormone (1); signaling activity (1); electron carrier activity (1) and others (3). For real-time quantitative RT-PCR, we selected catalase, glucose-6-phosphate dehydrogenase, heat shock protein 70, and metallothionein and confirmed that cadmium exposure enhanced induction of these four genes.

Identification of Genes Differentially Expressed in RAW264.7 Cells Infected by Salmonella typhimurium Using PCR Method

  • Kang, Kyung-Ho;Song, Jung-A;Shin, Dong-Jun;Choy, Hyon-E;Hong, Yeong-Jin
    • Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.29-33
    • /
    • 2007
  • Salmonella typhimurium, causing mouse typhoid, infects hosts such as macrophage cells, and proliferates in intracellular vacuoles causing infected cells to trigger numerous genes to respond against the infection. In this study, we tried to identify such genes in RAW264.7 cells by using the PCR screening method with degenerate primers. Fourteen genes were found to be differentially expressed after a 4 h infection in which the expression of 8 genes increased while expression of the others decreased. Most of the genes were involved in proinflammatory responses such as cytokines production and cell death. The mutation in msbB gene encoding the myristoyl transferase in lipid A of lipopolysaccharide (LPS) resulted in much lower toxicity to the inoculated animals. We compared the expression of the identified genes in wild-type and msbB-mutated S. typhimurium infections and found that Lyzs encoding lysozyme type M was differentially expressed. This gene is quite likely to be related to bacterial survival in the host cells.

Regulatory Network of MicroRNAs, Target Genes, Transcription Factors and Host Genes in Endometrial Cancer

  • Xue, Lu-Chen;Xu, Zhi-Wen;Wang, Kun-Hao;Wang, Ning;Zhang, Xiao-Xu;Wang, Shang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.475-483
    • /
    • 2015
  • Genes and microRNAs (miRNAs) have important roles in human oncology. However, most of the biological factors are reported in disperse form which makes it hard to discover the pathology. In this study, genes and miRNAs involved in human endometrial cancer(EC) were collected and formed into regulatory networks following their interactive relations, including miRNAs targeting genes, transcription factors (TFs) regulating miRNAs and miRNAs included in their host genes. Networks are constructed hierarchically at three levels: differentially expressed, related and global. Among the three, the differentially expressed network is the most important and fundamental network that contains the key genes and miRNAs in EC. The target genes, TFs and miRNAs are differentially expressed in EC so that any mutation in them may impact on EC development. Some key pathways in networks were highlighted to analyze how they interactively influence other factors and carcinogenesis. Upstream and downstream pathways of the differentially expressed genes and miRNAs were compared and analyzed. The purpose of this study was to partially reveal the deep regulatory mechanisms in EC using a new method that combines comprehensive genes and miRNAs together with their relationships. It may contribute to cancer prevention and gene therapy of EC.

Multi-tissue observation of the long non-coding RNA effects on sexually biased gene expression in cattle

  • Yoon, Joon;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.1044-1051
    • /
    • 2019
  • Objective: Recent studies have implied that gene expression has high tissue-specificity, and therefore it is essential to investigate gene expression in a variety of tissues when performing the transcriptomic analysis. In addition, the gradual increase of long non-coding RNA (lncRNA) annotation database has increased the importance and proportion of mapped reads accordingly. Methods: We employed simple statistical models to detect the sexually biased/dimorphic genes and their conjugate lncRNAs in 40 RNA-seq samples across two factors: sex and tissue. We employed two quantification pipeline: mRNA annotation only and mRNA+lncRNA annotation. Results: As a result, the tissue-specific sexually dimorphic genes are affected by the addition of lncRNA annotation at a non-negligible level. In addition, many lncRNAs are expressed in a more tissue-specific fashion and with greater variation between tissues compared to protein-coding genes. Due to the genic region lncRNAs, the differentially expressed gene list changes, which results in certain sexually biased genes to become ambiguous across the tissues. Conclusion: In a past study, it has been reported that tissue-specific patterns can be seen throughout the differentially expressed genes between sexes in cattle. Using the same dataset, this study used a more recent reference, and the addition of conjugate lncRNA information, which revealed alterations of differentially expressed gene lists that result in an apparent distinction in the downstream analysis and interpretation. We firmly believe such misquantification of genic lncRNAs can be vital in both future and past studies.

Profiling of Differentially Expressed Genes in Human Cervical Carcinoma

  • Lee, Seung-Hoon;Shim, Chan-Sub;Lee, Je-Ho
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.381-389
    • /
    • 2009
  • Using the DDRT-PCR, a series of differentially expressed genes in human primary cervical cancer was isolated. Among the 250 PCR amplimers, 88 gene fragments were confirmed by reverse Northern hybridization. Homology searches indicated that 26 out of 88 were previously known genes including calmodulin, human BBC1, histone H3.3, a series of ribosomal proteins (RPL19, RPS19, and RPS12), translation initiation factor (eIF-4AI), lactoferrin, integrin ${\alpha}6$, cell-surface antigens (CD9 and CD59), transcription factor (mbp-1), and mitochondrial proteins. Several unknown clones showed sequence homology with known genes. Furthermore, six of the unknown genes showed identical sequence with expressed sequence tags (EST) of unknown function. Differential expression patterns of identified genes were further examined and confirmed with multiple pairs of cervical cancer samples using Northern hybridization. Our profiling of differentially expressed genes may provide useful information about the underlying genetic alterations in human cervical carcinoma and diagnostic markers for this disease. The precise roles of these genes in cancer development remain to be elucidated.

Identifying Differentially Expressed Genes and Screening Small Molecule Drugs for Lapatinib-resistance of Breast Cancer by a Bioinformatics Strategy

  • Zhuo, Wen-Lei;Zhang, Liang;Xie, Qi-Chao;Zhu, Bo;Chen, Zheng-Tang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10847-10853
    • /
    • 2015
  • Background: Lapatinib, a dual tyrosine kinase inhibitor that interrupts the epidermal growth factor receptor (EGFR) and HER2/neu pathways, has been indicated to have significant efficacy in treating HER2-positive breast cancer. However, acquired drug resistance has become a very serious clinical problem that hampers the use of this agent. In this study, we aimed to screen small molecule drugs that might reverse lapatinib-resistance of breast cancer by exploring differentially expressed genes (DEGs) via a bioinformatics method. Materials and Methods: We downloaded the gene expression profile of BT474-J4 (acquired lapatinib-resistant) and BT474 (lapatinib-sensitive) cell lines from the Gene Expression Omnibus (GEO) database and selected differentially expressed genes (DEGs) using dChip software. Then, gene ontology and pathway enrichment analyses were performed with the DAVID database. Finally, a connectivity map was utilized for predicting potential chemicals that reverse lapatinib-resistance. Results: A total of 1, 657 DEGs were obtained. These DEGs were enriched in 10 pathways, including cell cycling, regulation of actin cytoskeleton and focal adhesion associate examples. In addition, several small molecules were screened as the potential therapeutic agents capable of overcoming lapatinib-resistance. Conclusions: The results of our analysis provided a novel strategy for investigating the mechanism of lapatinib-resistance and identifying potential small molecule drugs for breast cancer treatment.