• Title/Summary/Keyword: differential sensitivity

Search Result 411, Processing Time 0.023 seconds

The Sensitivity Analysis for Structure Modification using Partial Differentiation (구조물의 동특성 개선을 위한 모드 매개변수의 민감도 해석)

  • Lee, Hae-Jin;Abu, Aminudin;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.453-457
    • /
    • 2006
  • This study predicts the modified structure of eigenvectors and eigenvalues due to the changes in the mass and the stiffness of the structure. The sensitivity method of natural frequency using partial differential are derived with respect to the physical parameter to calculate the structure modification. The method are applied to the 3 degree of freedom???slumped mass model by modeling the mass and stiffness, and then applies the method to a real crankshaft system. The position, direction of parameter change and modified value were predicted for modification. Finally the predicted value is used to investigate the magnitude of vibration and we found that the effect of modification results to reduce the level of magnitude vibration is satisfactory.

  • PDF

The Acid Sensitivity of Gulose and Mannose in Chemically-Reduced Alginates Obtained from Pseudomonas syringae

  • Ashby, Richard D.;Day, Donal F.;Kim, Du-Woon
    • Food Science and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.555-558
    • /
    • 2006
  • The chemical reduction of Pseudomonas syringae subsp. phaseolicola alginates produces neutral polymers of D-mannose and L-gulose in source specific ratios. L-Gulose was highly sensitive to degradation by 1N HCl at $100^{\circ}C$. As hydrolysis time increased, gulose recovery decreased to 22% after 4 hr, whereas 98% of the D-mannose was recovered under the same conditions. Thin layer chromatography showed the formation of a second product upon L-gulose acid hydrolysis. This new product had a rate of flow (Rf) value of 0.58, identical to that of 1,6 anhydro-${\beta}$-D-mannopyranose and very close to that of 1,6 anhydro-${\beta}$-D-glucopyranose (Rf=0.60). Because of the difference in acid sensitivity between L-gulose and D-mannose, normal acid hydrolytic techniques applied to reduced alginates produces erroneous mannuronic acid (M): guluronic acid (G) ratio's unless one accounts for the differential rates of destruction of each sugar.

Rainfall Recognition from Road Surveillance Videos Using TSN (TSN을 이용한 도로 감시 카메라 영상의 강우량 인식 방법)

  • Li, Zhun;Hyeon, Jonghwan;Choi, Ho-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.5
    • /
    • pp.735-747
    • /
    • 2018
  • Rainfall depth is an important meteorological information. Generally, high spatial resolution rainfall data such as road-level rainfall data are more beneficial. However, it is expensive to set up sufficient Automatic Weather Systems to get the road-level rainfall data. In this paper, we propose to use deep learning to recognize rainfall depth from road surveillance videos. To achieve this goal, we collect a new video dataset and propose a procedure to calculate refined rainfall depth from the original meteorological data. We also propose to utilize the differential frame as well as the optical flow image for better recognition of rainfall depth. Under the Temporal Segment Networks framework, the experimental results show that the combination of the video frame and the differential frame is a superior solution for the rainfall depth recognition. The final model is able to achieve high performance in the single-location low sensitivity classification task and reasonable accuracy in the higher sensitivity classification task for both the single-location and the multi-location case.

Construction of Differential Type Search Coil Magnetometer (차동형 탐지코일 마그네토미터 제작)

  • Kim, J.H.;Son, De-Rac
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.5
    • /
    • pp.178-181
    • /
    • 2010
  • Search coil magnetometer has been used for detection of ac magnetic field with high sensitivity. To reduce demagnetizing factor of core and increase S/N ratio of search coil magnetometer, the core was divided by two parts and coil was wound on each cores. Two coils were connected serially and put into amplifier as differential mode. Constructed 120 mm length search coil magnetometer shows linearity of 0.03%, sensitivity of 9.3 mV/nT, and resolution of 20 pT at 1 Hz.

Some aspects of load-rate sensitivity in visco-elastic microplane material model

  • Kozar, Ivica;Ozbolt, Josko
    • Computers and Concrete
    • /
    • v.7 no.4
    • /
    • pp.317-329
    • /
    • 2010
  • The paper describes localization of deformation in a bar under tensile loading. The material of the bar is considered as non-linear viscous elastic and the bar consists of two symmetric halves. It is assumed that the model represents behavior of the quasi-brittle viscous material under uniaxial tension with different loading rates. Besides that, the bar could represent uniaxial stress-strain law on a single plane of a microplane material model. Non-linear material property is taken from the microplane material model and it is coupled with the viscous damper producing non-linear Maxwell material model. Mathematically, the problem is described with a system of two partial differential equations with a non-linear algebraic constraint. In order to obtain solution, the system of differential algebraic equations is transformed into a system of three partial differential equations. System is subjected to loadings of different rate and it is shown that localization occurs only for high loading rates. Mathematically, in such a case two solutions are possible: one without the localization (unstable) and one with the localization (stable one). Furthermore, mass is added to the bar and in that case the problem is described with a system of four differential equations. It is demonstrated that for high enough loading rates, it is the added mass that dominates the response, in contrast to the viscous and elastic material parameters that dominated in the case without mass. This is demonstrated by several numerical examples.

Diagnostic Potential of Strain Ratio Measurement and a 5 Point Scoring Method for Detection of Breast Cancer: Chinese Experience

  • Parajuly, Shyam Sundar;Lan, Peng Yu;Yun, Ma Bu;Gang, Yang Zhi;Hua, Zhuang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1447-1452
    • /
    • 2012
  • Aim: To evaluate the differential diagnostic potential of lesion stiffness assessed by the sonoelastographic strain index ratio (SR) and elastographic color scoring system (UE) for breast lesions. Materials and Methods: Three hundred and forty two breast masses (158 benign and 184 malignant) from 325 consecutive patients (mean age 44.2 years; range 16-81)who had been scheduled for a sonographically guided core biopsy were examined proposed by Itoh et al, with scoring 1-3=benign and 4-5=malignant. Strain and area ratios of each lesion were calculated within the same machine. Histological diagnosis was used as the reference standard. The area under the curve (AUC) and cut-off point were obtained by receiver operating curve and the cross table Fischer Test was carried out for assessing diagnostic value. Sensitivity, specificity, PPV, NPV, accuracy and false-discovery rates were compared. Results: The mean strain ratios for benign and malignant lesions were 1.87 and 7.9 respectively. (P<0.0001). When a cutoff point of 3.54 was used, SR had a sensitivity of 94.6%, a specificity 94.3%, a PPV of 95.1%, an NPV of 93.7% and an accuracy of 94.4%. The AUC values were 0.90 for the 5 point scoring system (UE) and 0.96 for the strain index ratio. The overall diagnostic performance was SR method was better (P<0.05). Conclusions: Strain ratio measurement could be another effective predictor in elastography imaging besides 5 the point scoring system for differential diagnosis of breast lesions.

Design and fabrication of a comb-type differential pressure sensor with silicon beams embedded in a silicone rubber membrane (실리콘 빔이 실리콘 고무 멤브레인에 삽입된 빗살형 차압센서의 설계 및 제조)

  • Park, Jeong-Yong;Kong, Sung-Soo;Seo, Chang-Taeg;Shin, Jang-Kyoo;Koh, Kwang-Rak;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.424-429
    • /
    • 2000
  • A novel differential pressure sensor has been developed with silicon beams embedded in a silicone rubber membrane. The transducer is usable for most applications involving exposure to harsh media. A piezoresistive differential pressure sensor using silicone rubber membrane has been fabricated on the selectively diffused (100)-oriented n/n+/n silicon substrates by a unique silicon micro-machining technique using porous silicon etching. The pressure sensitivity is about $0.66\;{\mu}V/mmHg$ and the non-linearity is less than 0.1%.

  • PDF

Differential Diagnosis on the Types of Hearing Loss using Short Increment Sensitivity Index(SISI) Test and Bekesy Audiometry (미세증가감수지수검사와 자기청력검사를 이용한 난청 유형의 감별 진단)

  • Kim, Jin-Dong;Jeon, Gye-Rok;Wang, Soo-Geon;Shin, Bum-Joo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.8
    • /
    • pp.704-713
    • /
    • 2009
  • As using recruitment phenomenon, SISI test and Bekesy audiometry are employed to differentially diagnose both the cochlear hearing loss and the retrocochlear hearing loss. The main purpose of this study is to find out the sensitivity and specificity of the SISI test within the scope of 1 KHz to 4 KHz in diagnosing various types of hearing losses. In this study, the Bekesy audiometry was conducted for Bekesy audiograms of certain groups according to Jerger's classification, which included persons with normal hearing and patients with hearing impairment. Subject persons of the SISI test were categorized into the several groups with normal hearing, mild hearing loss, moderate hearing loss, moderate-severe hearing loss and severe hearing loss, respectively. The sensitivity and specificity of certain groups were evaluated according to the SISI scores of 20 % below, 25 ${\sim}$ 65 %, and more than 70%. Also, the Bekesy audiometry is conducted on the several subject groups with normal hearing, mixed hearing loss, and sensori-neural hearing loss.

Finite Element Analysis of the Effects of Process and Material Parameters on the LVDT Output Characteristics (LVDT의 출력 특성에 미치는 공정 및 재료 변수의 영향에 관한 유한요소해석)

  • Yang, Young-Soo;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.11-19
    • /
    • 2021
  • Linear variable differential transformer (LVDT) is a displacement sensor and is commonly used owing to its wide measurement range, excellent linearity, high sensitivity, and precision. To improve the output characteristics of LVDT, a few studies have been conducted to analyze the output using a theoretical method or a finite element method. However, the material properties of the core and the electromagnetic force acting on the core were not considered in the previous studies. In this study, a finite element analysis model was proposed considering the characteristics of the LVDT composed of coils, core, magnetic shell and electric circuit, and the core displacement. Using the proposed model, changes in sensitivity and linear region of LVDT according to changes in process and material parameters were analyzed. The outputs of the LVDT model were compared with those of the theoretical analysis, and then, the proposed analysis model was validated. When the electrical conductivity of the core was high and the relative magnetic permeability was low, the decrease in sensitivity was large. Additionally, an increase in the frequency of the power led to further decrease in sensitivity. The electromagnetic force applied on the core increased as the voltage increased, the frequency decreased, and the core displacement increased.

Variational Formulation for Shape Optimization of Spatial Beam Structures (정식화를 이용한 3차원 구조물의 형상 최적설계)

  • 최주호;김종수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.123-130
    • /
    • 2002
  • A general formulation for shape design sensitivity analysis over three dimensional beam structure is developed based on a variational formulation of the beam in linear elasticity. Sensitivity formula is derived based on variational equations in cartesian coordinates using the material derivative concept and adjoint variable method for the displacement and Von-Mises stress functionals. Shape variation is considered for the beam shape in general 3-dimensional direction as well as for the orientation angle of the beam cross section. In the sensitivity expression, the end points evaluation at each beam segment is added to the integral formula, which are summed over the entire structure. The sensitivity formula can be evaluated with generality and ease even by employing piecewise linear design velocity field despite the bending model is fourth order differential equation. For the numerical implementation, commercial software ANSYS is used as analysis tool for the primal and adjoint analysis. Once the design variable set is defined using ANSYS language, shape and orientation variation vector at each node is generated by making finite difference to the shape with respect to each design parameter, and is used for the computation of sensitivity formula. Several numerical examples are taken to show the advantage of the method, in which the accuracy of the sensitivity is evaluated. The results are found excellent even by employing a simple linear function for the design velocity evaluation. Shape optimization is carried out for the geometric design of an archgrid and tilted bridge, which is to minimize maximum stress over the structure while maintaining constant weight. In conclusion, the proposed formulation is a useful and easy tool in finding optimum shape in a variety of the spatial frame structures.

  • PDF