• Title/Summary/Keyword: differential method

Search Result 4,247, Processing Time 0.029 seconds

Thermal vibration analysis of thick laminated plates by the moving least squares differential quadrature method

  • Wu, Lanhe
    • Structural Engineering and Mechanics
    • /
    • v.22 no.3
    • /
    • pp.331-349
    • /
    • 2006
  • The stresses and deflections in a laminated rectangular plate under thermal vibration are determined by using the moving least squares differential quadrature (MLSDQ) method based on the first order shear deformation theory. The weighting coefficients used in MLSDQ approximation are obtained through a fast computation of the MLS shape functions and their partial derivatives. By using this method, the governing differential equations are transformed into sets of linear homogeneous algebraic equations in terms of the displacement components at each discrete point. Boundary conditions are implemented through discrete grid points by constraining displacements, bending moments and rotations of the plate. Solving this set of algebraic equations yields the displacement components. Then substituting these displacements into the constitutive equation, we obtain the stresses. The approximate solutions for stress and deflection of laminated plate with cross layer under thermal load are obtained. Numerical results show that the MLSDQ method provides rapidly convergent and accurate solutions for calculating the stresses and deflections in a multi-layered plate of cross ply laminate subjected to thermal vibration of sinusoidal temperature including shear deformation with a few grid points.

Walking Pattern Generation employing DAE Integration Method

  • Kang Yun-Seok;Park Jung-Hun;Yim Hong Jae
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.364-370
    • /
    • 2005
  • A stable walking pattern generation method for a biped robot is presented in this paper. In general, the ZMP (zero moment point) equations, which are expressed as differential equations, are solved to obtain a stable walking pattern. However, the number of differential equations is less than that of unknown coordinates in the ZMP equations. It is impossible to integrate the ZMP equations directly since one or more constraint equations are involved in the ZMP equations. To overcome this difficulty, DAE (differential and algebraic equation) solution method is employed. The proposed method has enough flexibility for various kinematic structures. Walking simulation for a virtual biped robot is performed to demonstrate the effectiveness and validity of the proposed method. The method can be applied to the biped robot for stable walking pattern generation.

Impossible Differential Cryptanalysis on ESF Algorithm with Simplified MILP Model

  • Wu, Xiaonian;Yan, Jiaxu;Li, Lingchen;Zhang, Runlian;Yuan, Pinghai;Wang, Yujue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3815-3833
    • /
    • 2021
  • MILP-based automatic search is the most common method in analyzing the security of cryptographic algorithms. However, this method brings many issues such as low efficiency due to the large size of the model, and the difficulty in finding the contradiction of the impossible differential distinguisher. To analyze the security of ESF algorithm, this paper introduces a simplified MILP-based search model of the differential distinguisher by reducing constrains of XOR and S-box operations, and variables by combining cyclic shift with its adjacent operations. Also, a new method to find contradictions of the impossible differential distinguisher is proposed by introducing temporary variables, which can avoid wrong and miss selection of contradictions. Based on a 9-round impossible differential distinguisher, 15-round attack of ESF can be achieved by extending forward and backward 3-round in single-key setting. Compared with existing results, the exact lower bound of differential active S-boxes in single-key setting for 10-round ESF are improved. Also, 2108 9-round impossible differential distinguishers in single-key setting and 14 12-round impossible differential distinguishers in related-key setting are obtained. Especially, the round of the discovered impossible differential distinguisher in related-key setting is the highest, and compared with the previous results, this attack achieves the highest round number in single-key setting.

EIGENVALUE APPROACH FOR UNSTEADY FRICTION WATER HAMMER MODEL

  • Jung Bong Seog;Karney Bryan W.
    • Water Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.177-183
    • /
    • 2004
  • This paper introduces an eigenvalue method of transforming the hyperbolic partial differential equations of a particular unsteady friction water hammer model into characteristic form. This method is based on the solution of the corresponding one-dimensional Riemann problem that transforms hyperbolic quasi-linear equations into ordinary differential equations along the characteristic directions, which in this case arises as the eigenvalues of the system. A mathematical justification and generalization of the eigenvalues method is provided and this approach is compared to the traditional characteristic method.

  • PDF

A Modified Adams Predictor-Corrector Method for Differential Equations with Highly Oscillating Solutions

  • Moon, Byung Soo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.2 no.2
    • /
    • pp.21-25
    • /
    • 1998
  • An algorithm for a solution of ordinary differential equations using a modified corrector in the Adams predictor-corrector method of order four is described. The Lagrange interpolation used in the corrector of the Adams method is replaced partially by the cubic spline interpolation satisfying the first derivative constraints at the two end points. By exhibiting three examples, we show that the proposed method is more effcient when the solution of a differential equation is highly oscillating.

  • PDF

THE ITERATED PROJECTION METHOD FOR INTEGRO-DIFFERENTIAL EQUATIONS WITH CAUCHY KERNEL

  • Mennouni, Abdelaziz
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.661-667
    • /
    • 2013
  • In this paper we propose the iterated projection method for the approximate solution of an integro-differential equations with Cauchy kernel in $L^2([-1,1],\mathbb{C})$ using Legendre polynomials. We prove the convergence of the method. A system of linear equations is to be solved. Numerical examples illustrate the theoretical results.

DECOMPOSITION METHOD FOR SOLVING NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS

  • KAMEL AL-KHALED;ALLAN FATHI
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.415-425
    • /
    • 2005
  • This paper outlines a reliable strategy for solving nonlinear Volterra-Fredholm integro-differential equations. The modified form of Adomian decomposition method is found to be fast and accurate. Numerical examples are presented to illustrate the accuracy of the method.

Classification via principal differential analysis

  • Jang, Eunseong;Lim, Yaeji
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.2
    • /
    • pp.135-150
    • /
    • 2021
  • We propose principal differential analysis based classification methods. Computations of squared multiple correlation function (RSQ) and principal differential analysis (PDA) scores are reviewed; in addition, we combine principal differential analysis results with the logistic regression for binary classification. In the numerical study, we compare the principal differential analysis based classification methods with functional principal component analysis based classification. Various scenarios are considered in a simulation study, and principal differential analysis based classification methods classify the functional data well. Gene expression data is considered for real data analysis. We observe that the PDA score based method also performs well.

PARTIAL DIFFERENTIAL EQUATIONS FOR PRODUCTS OF TWO CLASSICAL ORTHOGONAL POLYNOMIALS

  • LEE, D.W.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.179-188
    • /
    • 2005
  • We give a method to derive partial differential equations for the product of any two classical orthogonal polynomials in one variable and thus find several new differential equations. We also explain with an example that our method can be extended to a more general case such as product of two sets of orthogonal functions.

A Full-Wave Model Analysis on Noise Reduction and Impedance of Power-Bus Cavity with Differential Signaling

  • Kahng, Sung-Tek
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.4
    • /
    • pp.197-202
    • /
    • 2006
  • This paper presents a study on the differential signaling for the rectangular power-bus structure. The full-wave modal analysis method analyzes how the differential-signaling can lower the power-bus resonance noise levels. The methodology is validated by the use of the FDTD method and reference measurements.