• Title/Summary/Keyword: differential current-to-time interval converter

Search Result 3, Processing Time 0.019 seconds

A Differential Current-to-Time Interval Converter Using Current-Tunable Schmitt Triggers

  • Chung, Won-Sup
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.375-380
    • /
    • 2017
  • A differential current-to-time interval converter is presented for current mode sensors. It consists of a ramp voltage generator, a current mode sensor, a reference current source, two current-tunable Schmitt triggers, a one-shot multivibrator, and two logic gates. The design principle is to apply a ramp voltage to each input of the two current-tunable Schmitt triggers whose threshold voltages are proportional to the drain current values of the current mode sensors. A proposed circuit converts a current change in the ISFET biosensor into its equivalent pulse width change. A prototype circuit built using TSMC 0.18 nm CMOS process exhibit a conversion sensitivity amounting to $726.9{\mu}s/pH$ over pH variation range of 2-12 and a linearity error less than ${\pm}0.05%$.

A Resistance Deviation-To-Time Interval Converter Based On Dual-Slope Integration

  • Shang, Zhi-Heng;Chung, Won-Sup;Son, Sang-Hee
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.479-485
    • /
    • 2015
  • A resistance deviation-to-time interval converter based on dual-slope integration using second generation current conveyors (CCIIs) is designed for connecting resistive bridge sensors with a digital system. It consists of a differential integrator using CCIIs, a voltage comparator, and a digital control logic for controlling four analog switches. Experimental results exhibit that a conversion sensitivity amounts to $15.56{\mu}s/{\Omega}$ over the resistance deviation range of $0-200{\Omega}$ and its linearity error is less than ${\pm}0.02%$. Its temperature stability is less than $220ppm/^{\circ}C$ in the temperature range of $-25-85^{\circ}C$. Power dissipation of the converter is 60.2 mW.

A differential capacitance deviation-to-time converter for triaxial position sensor (3축 위치 센서를 위한 차동 용량차-시간 변환기)

  • Won, Chang-Su;Chung, Won-Sup;Son, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.125-126
    • /
    • 2008
  • A differential capacitance deviation-to-time converter for interfacing position sensor is presented. It consists of triaxial position sensor, six comparators, six current mirrors, and control logic. The prototype differential capacitance deviation-to-time interval converter has been simulated using Chartered $0.35-{\mu}m$ CMOS parameters. The simulation results show that the maximum conversion time of the converter is $350{\mu}s$ and the linearity error is less than ${\pm}0.00l5%$.

  • PDF