• Title/Summary/Keyword: different types of meat cut

Search Result 6, Processing Time 0.019 seconds

Rapid Nondestructive Prediction of Multiple Quality Attributes for Different Commercial Meat Cut Types Using Optical System

  • An, Jiangying;Li, Yanlei;Zhang, Chunzhi;Zhang, Dequan
    • Food Science of Animal Resources
    • /
    • v.42 no.4
    • /
    • pp.655-671
    • /
    • 2022
  • There are differences of spectral characteristics between different types of meat cut, which means the model established using only one type of meat cut for meat quality prediction is not suitable for other meat cut types. A novel portable visible and near-infrared (Vis/NIR) optical system was used to simultaneously predict multiple quality indicators for different commercial meat cut types (silverside, back strap, oyster, fillet, thick flank, and tenderloin) from Small-tailed Han sheep. The correlation coefficients of the calibration set (Rc) and prediction set (Rp) of the optimal prediction models were 0.82 and 0.81 for pH, 0.88 and 0.84 for L*, 0.83 and 0.78 for a*, 0.83 and 0.82 for b*, 0.94 and 0.86 for cooking loss, 0.90 and 0.88 for shear force, 0.84 and 0.83 for protein, 0.93 and 0.83 for fat, 0.92 and 0.87 for moisture contents, respectively. This study demonstrates that Vis/NIR spectroscopy is a promising tool to achieve the predictions of multiple quality parameters for different commercial meat cut types.

Effects of hydrocolloids on the quality characteristics of cold-cut duck meat jelly

  • Kim, Tae-Kyung;Yong, Hae In;Jang, Hae Won;Kim, Young-Boong;Sung, Jung-Min;Kim, Hyun-Wook;Choi, Yun-Sang
    • Journal of Animal Science and Technology
    • /
    • v.62 no.4
    • /
    • pp.587-594
    • /
    • 2020
  • In this study, we examined the effects of various hydrocolloid (alginate, carrageenan, and konjac) treatments on the quality characteristics of cold-cut duck meat jelly. Seven different types of cold-cut duck meat jelly were prepared: control, without hydrocolloids; T1, 0.5% alginate; T2, 0.5% carrageenan; T3, 0.5% konjac; T4, 0.25% alginate + 0.25% carrageenan; T5, 0.25% carrageen + 0.25% konjac; and T6, 0.25% alginate + 0.25% konjac. The pH and moisture content of the cold-cut duck meat jelly with hydrocolloids was higher (p < 0.05) than that of the control. The highest lightness value was recorded for T4 and T6 (p < 0.05), and the hardness was lower (p < 0.05) in the meat jelly with hydrocolloids than in the control, except for T2 and T5. The springiness of the meat jelly was the highest (p < 0.05) in T1 and T4. The onset, peak, and end temperatures were the lowest (p < 0.05) in the control. The highest appearance score of the meat jelly was observed in T6, and its overall acceptability was higher (p < 0.05) than that of the control, indicating that, of all the treatments, 0.25% alginate + 0.25% konjac yielded the most desirable results. Thus, the combined use of duck skin and gelatin with alginate and konjac is potentially applicable for the development of new cold-cut duck meat products.

Comparative review of muscle fiber characteristics between porcine skeletal muscles

  • Junyoung Park;Sung Sil Moon;Sumin Song;Huilin Cheng;Choeun Im;Lixin Du;Gap-Don Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.2
    • /
    • pp.251-265
    • /
    • 2024
  • Meat derived from skeletal muscles of animals is a highly nutritious type of food, and different meat types differ in nutritional, sensory, and quality properties. This study was conducted to compare the results of previous studies on the muscle fiber characteristics of major porcine skeletal muscles to the end of providing basic data for understanding differences in physicochemical and nutritional properties between different porcine muscle types (or meat cuts). Specifically, the muscle fiber characteristics between 19 major porcine skeletal muscles were compared. The muscle fibers that constitute porcine skeletal muscle can be classified into several types based on their contractile and metabolic characteristics. In addition, the muscle fiber characteristics, including size, composition, and density, of each muscle type were investigated and a technology based on these muscle fiber characteristics for improving meat quality or preventing quality deterioration was briefly discussed. This comparative review revealed that differences in muscle fiber characteristics are primarily responsible for the differences in quality between pork cuts (muscle types) and also suggested that data on muscle fiber characteristics can be used to develop optimal meat storage and packaging technologies for each meat cut (or muscle type).

The A Literary Investigation on Mandu (Dumpling);Types and Cooking Methods of Mandu (Dumpling) During the Joseon Era (1400's${\sim}$1900's) (만두의 조리방법에 대한 문헌적 고찰;조선시대 만두의 종류와 조리방법에 대한 문헌적 고찰(1400년대${\sim}$1900년대까지))

  • Bok, Hye-Ja
    • Journal of the Korean Society of Food Culture
    • /
    • v.23 no.2
    • /
    • pp.273-292
    • /
    • 2008
  • Among all the ingredients usedin mandu, the following types were used:, 13 types of grains were used (12.38%), 30 types of vegetables, fruits, bulbs,and nuts were used (28.57%), 32 types of marine products, birds, meats, fishes, and shellfishes were used (30.48%), 10 types of functional ingredients were used (9.52%) and. For spices, 20 types of spices were used (19.05%). 2. Cooking Methods offor Mandu. The mMandu eaten at in the early Joseon era had was primarily made ofusedbuckwheat that contained boiled tofu or egg uiijuk in the kneaded dough for the most part and while kneading with buckwheat, the tofu or egg uiijuk has been boiled down to knead the dough, and and starch powder, bean powder, or rice powder, etc were mixed to make the mandu coating. Buckwheat powder was mixed toadded to the flourwer or was used by itself, while meat, vegetables, tofu, and shiitake mushroom, etc were also addedincluded. From the 18th century, the host plant, or cabbage kimchi, were prepared and combined had been sliced to be used as filling together while red pepper powder was mixed combined withto spices or vinegar soy sauce to be used together. Also, Radishes had beenwere also used as filling, but shown as not being used fromafter the start of the 1900's. For the shape of mMandu, it was madeinto different shapes such as as triangle, rectangle, date plum, gwebul, half moon, or pomegranate shapes, and then shapes to be boiled in simmering water, baked, or cooked as soup in clear broth for soup., In the 17th to 18th century, boilingthen in a steamer gradually became a cooking style, assumed the style of boiling in a steamer in $17th{\sim}18th$ century while in the 16th century,the an essay ofn fermenting flour in ‘Food Dimibang’ in 16th century had indicated it was cooked as the style ofby steaming in a rice steamer. Also, Mandu may have also contained the following: the thin-cut and boiled fish was cut out thin to put into the filling and boiled down, made by putting in added pine nuts after making bbeef jerky or boiled- down meat, fish, or shellfish itself to extractsand mold mandu only the ingredients combined withto put on starch powder, and then boiled down and put on pine nut powder finally, after it or cooled it wasdown to be eaten by dipping in vinegar soy sauce. In conclusion, many different types of mandu were made during the Joseon era using a variety ofwhile the ones using such various ingredients. are also one type of mandu.

Rapid Detection of Escherichia coli in Fresh Foods Using a Combination of Enrichment and PCR Analysis

  • Choi, Yukyung;Lee, Sujung;Lee, Heeyoung;Lee, Soomin;Kim, Sejeong;Lee, Jeeyeon;Ha, Jimyeong;Oh, Hyemin;Lee, Yewon;Kim, Yujin;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.38 no.4
    • /
    • pp.829-834
    • /
    • 2018
  • The objective of this study was to determine the minimum enrichment time for different types of food matrix (pork, beef, and fresh-cut lettuce) in an effort to improve Escherichia coli detection efficiency. Fresh pork (20 g), beef (20 g), and fresh-cut lettuce (20 g) were inoculated at 1, 2, and 3 Log CFU/g of Escherichia coli. Samples were enriched in filter bags for 3 or 5 h at $44.5^{\circ}C$, depending on sample type. E. coli cell counts in the samples were enriched in E. coli (EC) broth at 3 or 5 h. One milliliter of the enriched culture medium was used for DNA extraction, and PCR assays were performed using primers specific for uidA gene. To detect E. coli (uidA) in the samples, a 3-4 Log CFU/mL cell concentration was required. However, E. coli was detected at 1 Log CFU/g in fresh pork, beef, and fresh-cut lettuce after 5, 5, and 3-h enrichment, respectively. In conclusion, 5-h enrichment for fresh meats and 3-h enrichment for fresh-cut lettuce in EC broth at $44.5^{\circ}C$, and PCR analysis using uidA gene-specific primers were appropriate to detect E. coli rapidly in food samples.

Investigation of Physicochemical and Sensory Quality Differences in Pork Belly and Shoulder Butt Cuts with Different Quality Grades

  • Hoa, Van-Ba;Seol, Kukhwan;Seo, Hyunwoo;Kang, Sunmoon;Kim, Yunseok;Seong, Pilnam;Moon, Sungsil;Kim, Jinhyoung;Cho, Soohyun
    • Food Science of Animal Resources
    • /
    • v.41 no.2
    • /
    • pp.224-236
    • /
    • 2021
  • The objective of this study was to investigate the effects of quality grade (QG) on the physicochemical composition and eating quality attributes of pork belly and shoulder butt. Seventy-two growing-finishing crossbred pigs were slaughtered and their carcasses were graded according to the Korean pork carcass grading system. Based on the grading criteria, the carcasses were classified into: QG 1+ (n=23), QG 1 (n=23) and QG 2 (n=26) groups. At 24 h postmortem, belly and shoulder butt cuts were collected from the QG groups and used for analysis of meat quality, flavor compounds and eating quality attributes. Results showed that the variation in fat content among QG was approximately 2% in the both cut types. The QG showed no effects on all the quality traits: cooking loss, pH and color of the belly or shoulder butt (p>0.05). Thirty-five flavor compounds comprising mainly fatty acids oxidation/degradation-derived products (e.g., aldehydes) and only few Maillard reaction-derived products (e.g., sulfur-and nitrogen-containing compounds) were identified. However, the QG showed a minor effect on the flavor profiles in both the belly and shoulder butt. Regarding the sensory quality, no effects of the QG were found on all the eating quality attributes (color, flavor, juiciness, tenderness and acceptability) for both the belly and shoulder butt cuts (p>0.05). Thus, it may be concluded that the current pork carcass grading standards do not reflect the real quality and value of the belly and shoulder butt cuts.