• Title/Summary/Keyword: different ground motions

Search Result 296, Processing Time 0.02 seconds

Seismic Response of R/C Structures Subjected to Artificial Ground Motions Compatible with Design Spectrum (설계용 스펙트럼에 적합한 인공지진동을 입력한 철근콘크리트 구조물의 지진응답 특성의 고찰)

  • Jun, Dae-Han;Kang, Ho-Geun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • In seismic response analysis of building structures, the input ground accelerations have considerable effect on the nonlinear response characteristics of structures. The characteristics of soil and the locality of the site where those ground motions were recorded affect on the contents of earthquake waves. Therefore, it is difficult to select appropriate input ground motions for seismic response analysis. This study describes a generation of artificial earthquake wave compatible with seismic design spectrum, and also evaluates the seismic response values of multistory reinforced concrete structures by the simulated earthquake motions. The artificial earthquake wave are generated according to the previously recorded earthquake waves in past major earthquake events. The artificial wave have identical phase angles to the recorded earthquake wave, and their overall response spectra are compatible with seismic design spectrum with 5% critical viscous damping. The input ground motions applied to this study have identical elastic acceleration response spectra, but have different phase angles. The purpose of this study is to investigate their validity as input ground motion for nonlinear seismic response analysis. As expected, the response quantifies by simulated earthquake waves present better stable than those by real recording of ground motion. It was concluded that the artificial earthquake waves generated in this paper are applicable as input ground motions for a seismic response analysis of building structures. It was also found that strength of input ground motions for seismic analysis are suitable to be normalize as elastic acceleration spectra.

Influence of near-fault ground motions characteristics on elastic seismic response of asymmetric buildings

  • Tabatabaei, R.;Saffari, H.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.489-500
    • /
    • 2011
  • The elastic seismic response of plan-asymmetric multi storey steel-frame buildings is investigated under earthquake loading with particular emphasis on forward-rupture directivity and fling records. Three asymmetric building systems are generated with different torsional stiffness and varying static eccentricity. The structural characteristic of these systems are designed according to UBC 97 code and their seismic responses subjected to a set of earthquake records are obtained from the response history analysis (RHA) as well as the linear static analysis (LSA). It is shown that, the elastic torsional response is influenced by the intensity of near-fault ground motions with different energy contents. In the extreme case of very strong earthquakes, the behaviour of torsionally stiff buildings and torsionally flexible buildings may differ substantially due to the fact that the displacement envelope of the deck depends on ground motion characteristics.

Developed empirical model for simulation of time-varying frequency in earthquake ground motion

  • Yu, Ruifang;Yuan, Meiqiao;Yu, Yanxiang
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1463-1480
    • /
    • 2015
  • This research aims to develop an empirical model for simulation of time-varying frequency in earthquake ground motion so as to be used easily in engineering applications. Briefly, 10545 recordings of the Next Generation Attenuation (NGA) global database of accelerograms from shallow crustal earthquakes are selected and binned by magnitude, distance and site condition. Then the wavelet spectrum of each acceleration record is calculated by using one-dimensional continuous wavelet transform, and the frequencies corresponding to the maximum values of the wavelet spectrum at a series of sampling time, named predominant frequencies, are extracted to analyze the variation of frequency content of seismic ground motions in time. And the time-variation of the predominant frequencies of 178 magnitude-distance-site bins for different directions are obtained by calculating the mean square root of predominant frequencies within a bin. The exponential trigonometric function is then use to fit the data, which describes the predominant frequency of ground-motion as a function of time with model parameters given in tables for different magnitude, distance, site conditions and direction. Finally, a practical frequency-dependent amplitude envelope function is developed based on the time-varying frequency derived in this paper, which has clear statistical parameters and can emphasize the effect of low-frequency components on later seismic action. The results illustrate that the time-varying predominant frequency can preferably reflect the non-stationarity of the frequency content in earthquake ground motions and that empirical models given in this paper facilitates the simulation of ground motions.

Evaluation of ground motion scaling methods on drift demands of energy-based plastic designed steel frames under near-fault pulse-type earthquakes

  • Ganjavi, Behnoud;Hadinejad, Amirali;Jafarieh, Amir Hossein
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.91-110
    • /
    • 2019
  • In the present study, the effects of six different ground motion scaling methods on inelastic response of nonlinear steel moment frames (SMFs) are studied. The frames were designed using energy-based PBPD approach with the design concept using pre-selected target drift and yield mechanism as performance limit state. Two target spectrums are considered: maximum credible earthquake spectrum (MCE) and design response spectrum (DRS). In order to investigate the effects of ground motion scaling methods on the response of the structures, totally 3216 nonlinear models including three frames with 4, 8 and 16 stories are designed using PBPD approach and then they are subjected to ensembles of ground motions including 42 far-fault and 90 near-fault pulse-type records which were scaled using the six different scaling methods in accordance to the two aforementioned target spectrums. The distributions of maximum inter-story drift over the height of the structures are computed and compared. Finally, the efficiency and reliability of each ground motion scaling method to estimate the maximum nonlinear inter-story drift of special steel moment frames designed by energy-based PBPD approach are statistically investigated, and the most suitable scaling methods with the lowest dispersion for two groups of earthquake ground motions are introduced.

Seismic fragility analysis of bridge response due to spatially varying ground motions

  • Kun, C.;Li, B.;Chouw, N.
    • Coupled systems mechanics
    • /
    • v.4 no.4
    • /
    • pp.297-316
    • /
    • 2015
  • The use of fragility curves in the design of bridges is becoming common these days. In this study, experimental data have been used to develop fragility curves for the potential of girder unseating of a three-segment bridge and a bridge-abutment system including the influence of spatially varying ground motions, pounding, and abutment movement. The ground excitations were simulated based on the design spectra for different soil conditions. The Newmarket Viaduct replacement bridge in Auckland was used as the prototype bridge. These fragility curves were also applied to the 2010 Darfield and 2011 Christchurch earthquakes. The study showed that for bridges with similar characteristics as the chosen prototype and with similar fundamental frequencies, pounding could increase the probability of girder unseating by up to 35% and 30% based on the AASHTO and NZTA seating length requirements, respectively. The assumption of uniform ground excitations in many design practices, such as the NZTA requirements, could potentially be disastrous as girders might have a very good chance of unseating (as much as 53% higher chances when considering spatial variation of ground motions) even when they are designed not to. In the case of superstructures with dissimilar frequencies, the assumption of fixed abutments could significantly overestimate the girder unseating potential when pounding was ignored and underestimate the chances when pounding was considered. Bridges subjected to spatially varying ground excitations simulated based on the New Zealand design spectra for soft soil conditions with weak correlation shows the highest chances of girders falling off, of up to 65% greater than for shallow soil excitations.

Seismic fragility analysis of sliding artifacts in nonlinear artifact-showcase-museum systems

  • Liu, Pei;Li, Zhi-Hao;Yang, Wei-Guo
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.333-350
    • /
    • 2021
  • Motivated by the demand of seismic protection of museum collections and development of performance-based seismic design guidelines, this paper investigates the seismic fragility of sliding artifacts based on incremental dynamic analysis and three-dimensional finite element model of the artifact-showcase-museum system considering nonlinear behavior of the structure and contact interfaces. Different intensity measures (IMs) for seismic fragility assessment of sliding artifacts are compared. The fragility curves of the sliding artifacts in both freestanding and restrained showcases placed on different floors of a four-story reinforced concrete frame structure are developed. The seismic sliding fragility of the artifacts within a real-world museum subjected to bi-directional horizontal ground motions is also assessed using the proposed IM and engineering demand parameter. Results show that the peak floor acceleration including only values initiating sliding is an efficient IM. Moreover, the sliding fragility estimate for the artifact in the restrained showcase increases as the floor level goes higher, while it may not be true in the freestanding showcase. Furthermore, the artifact is more prone to sliding failure in the restrained showcase than the freestanding showcase. In addition, the artifact has slightly worse sliding performance subjected to bi-directional motions than major-component motions.

Stochastic response of suspension bridges for various spatial variability models

  • Adanur, Suleyman;Altunisik, Ahmet C.;Soyluk, Kurtulus;Dumanoglu, A. Aydin
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1001-1018
    • /
    • 2016
  • The purpose of this paper is to compare the structural responses obtained from the stochastic analysis of a suspension bridge subjected to uniform and partially correlated seismic ground motions, using different spatial correlation functions commonly used in the earthquake engineering. The spatial correlation function employed in this study consists of a term that characterizes the loss of coherency. To account for the spatial variability of ground motions, the widely used four loss of coherency models in the literature has been taken into account in this study. Because each of these models has its own characteristics, it is intended to determine the sensitivity of a suspension bridge due to these losses of coherency models which represent the spatial variability of ground motions. Bosporus Suspension Bridge connects Europe to Asia in Istanbul is selected as a numerical example. The bridge has steel towers that are flexible, inclined hangers and a steel box-deck of 1074 m main span, with side spans of 231 and 255 m on the European and Asian sides, respectively. For the ground motion the filtered white noise model is considered and applied in the vertical direction, the intensity parameter of this model is obtained by using the S16E component of Pacoima Dam record of 1971 San Fernando earthquake. An analytically simple model called as filtered white noise ground motion model is chosen to represent the earthquake ground motion. When compared with the uniform ground motion case, the results obtained from the spatial variability models with partial correlation outline the necessity to include the spatial variability of ground motions in the stochastic dynamic analysis of suspension bridges. It is observed that while the largest response values are obtained for the model proposed by Harichandran and Vanmarcke, the model proposed by Uscinski produces the smallest responses among the considered partially correlated ground motion models. The response values obtained from the uniform ground motion case are usually smaller than those of the responses obtained from the partially correlated ground motion cases. While the response values at the flexible parts of the bridge are totally dominated by the dynamic component, the pseudo-static component also has significant contributions for the response values at the rigid parts of the bridge. The results also show the consistency of the spatial variability models, which have different characteristics, considered in this study.

Reliability-based fragility analysis of nonlinear structures under the actions of random earthquake loads

  • Salimi, Mohammad-Rashid;Yazdani, Azad
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.75-84
    • /
    • 2018
  • This study presents the reliability-based analysis of nonlinear structures using the analytical fragility curves excited by random earthquake loads. The stochastic method of ground motion simulation is combined with the random vibration theory to compute structural failure probability. The formulation of structural failure probability using random vibration theory, based on only the frequency information of the excitation, provides an important basis for structural analysis in places where there is a lack of sufficient recorded ground motions. The importance of frequency content of ground motions on probability of structural failure is studied for different levels of the nonlinear behavior of structures. The set of simulated ground motion for this study is based on the results of probabilistic seismic hazard analysis. It is demonstrated that the scenario events identified by the seismic risk differ from those obtained by the disaggregation of seismic hazard. The validity of the presented procedure is evaluated by Monte-Carlo simulation.

Data-driven modeling of optimal intensity measure of soil-nailed wall structures

  • Massoumeh Bayat;Mahdi Bayat;Mahmoud Bayat
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.85-92
    • /
    • 2023
  • This article examines the seismic vulnerability of soil nail wall structures. Detailed information regarding finite element modeling has been provided. The fragility function evaluates the relationship between ground motion intensities and the probability of surpassing a specific level of damage. The use of incremental dynamic analysis (IDA) has been applied to the soil nail wall against low to severe ground motions. In the nonlinear dynamic analysis of the soil nail wall, a set of twenty seismic ground motions with varying PGA ranges are used. The numerical results demonstrate that the soil-nailed wall reaction is extremely sensitive to earthquake ground vibrations under different intensity measures (IM). In addition, the analytical fragility curve is provided for various intensity values.

Seismic responses of base-isolated nuclear power plant structures considering spatially varying ground motions

  • Sayed, Mohamed A.;Go, Sunghyuk;Cho, Sung Gook;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.169-188
    • /
    • 2015
  • This study presents the effects of the spatial variation of ground motions in a hard rock site on the seismic responses of a base-isolated nuclear power plant (BI-NPP). Three structural models were studied for the BI-NPP supported by different number of lead rubber bearing (LRB) base isolators with different base mat dimensions. The seismic responses of the BI-NPP were analyzed and investigated under the uniform and spatial varying excitation of El Centro ground motion. In addition, the rotational degrees of freedom (DOFs) of the base mat nodes were taken to consider the flexural behavior of the base mat on the seismic responses under both uniform and spatial varying excitation. Finally, the seismic response results for all the analysis cases of the BI-NPP were investigated in terms of the vibration periods and mode shapes, lateral displacements, and base shear forces. The analysis results indicate that: (1) considering the flexural behavior of the base mat has a negligible effect on the lateral displacements of base isolators regardless of the number of the isolators or the type of excitation used; (2) considering the spatial variation of ground motions has a substantial influence on the lateral displacements of base isolators and the NPP stick model; (3) the ground motion spatial variation effect is more prominent on lateral displacements than base shear forces, particularly with increasing numbers of base isolators and neglecting flexural behavior of the base mat.