• Title/Summary/Keyword: difference of air pressure

Search Result 552, Processing Time 0.028 seconds

Explosion Characteristics of Nonhomogeneous LPG-Air Mixtures (농도 불균일 LPG-공기 혼합기체의 폭발특성)

  • 배정일;김영수;서용칠;신창섭
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.114-119
    • /
    • 1993
  • The explosion characteristics of nonhomogeneous LPG-Air mixtures was measured in a cylindrical vessel and a pipe. The maximum explosion pressure, the maximum rate of explosion pressure rise, and the flame propagation velocity were measured and compared with that of homogeneous explosion by changing the effective factors on the explosion of nonhomogeneous mixtures such as pressure difference, effusion time and delay time. Explosion was occured even in the lower concentration than the lean flammability limit of mixture. The maximum explosion pressure was increased with increase of LPG concentration, however, the maximum explosion pressure rise was not in the nonhomogeneous explosion. An d the flame propagation velocity was decreased with nonhomogeneity, however, the maximum explosion pressure was always above 0.7kg/$\textrm{cm}^2$.

  • PDF

Finite Difference Analysis of Dynamic Characteristics of Negative Pressure Rectangular Porous Gas Bearings (음압 직각 다공질 공기베어링의 동특성에 관한 유한차분 해석)

  • Hwang Pyung;Khan Polina;Lee Chun-Moo;Kim Eun-Hyo
    • Tribology and Lubricants
    • /
    • v.22 no.2
    • /
    • pp.93-98
    • /
    • 2006
  • The numerical analysis of the negative pressure porous gas bearings is presented. The pressure distribution is calculated using the finite difference method. The Reynolds equation and Darcy's equation are solved simultaneously. The air bearing stiffness and damping are evaluated using the perturbation method. Rectangular uniform grid is employed to model the bearing. The vacuum preloading is considered. The pressure in the vacuum pocket is assumed to be a constant negative pressure. The total load, stiffness, damping and flow rate are calculated fur several geometrical configurations and several values of negative pressure. It is found that too large vacuum pocket can result in negative total force.

An Experimental and Numerical Study on Automotive IRDS Condenser (자동차용 IRDS 응축기에 대한 실험과 해석적 연구)

  • Kim, Hak-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.58-65
    • /
    • 2011
  • The specific objective of this study was to develop an IRDS (integrated receiver drier subcooling) condenser model for use in a mobile air-conditioning system. A three-zone model based on the desuperheating, two-phase, and subcooling sections of a condenser could be used to estimate the performance with a good accuracy. Overall heat transfer coefficients for each of the three sections, expressed as a function of the air velocity across the condenser and refrigerant mass flow rate and the model using the elemental difference method incorporate calculations to determine the pressure drop, heat performance within the condenser and it includes physical parameters (pass, tube hole size and length) that can be varied to analyze potential design changes without exhaustive experimental efforts. it was found that an accuracy of heat performance was within 5% in case of using the various condensers, the refrigerant pressure drop was predicted within 25% and the pressure drop of air side was well matched with experiment data within 4%.

A Study on the Closing Force according to the Opening Angle of the Door in the Smoke Control System (제연구역 출입문 개방 각도에 따른 폐쇄력에 관한 연구)

  • Oh, Won-Sin;Joung, Suck-Hwan
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.4
    • /
    • pp.43-48
    • /
    • 2021
  • In this study, the experiment was conducted on a fire door(W × H = 0.98 m × 2.19 m) installed on the vestibule. The effective leakage area for each opening angles and closing forces derived from the impulse-momentum equation was compared and analyzed with the experimental results. As a result of the experiment, the major factors affecting the door closing forces were the pressure difference and the area of the door. The difference of door closing forces between measured and calculated values by the impulse-momentum equation showed a deviation of less than ±15% at the opening angles of 5°to 10°. At the door opening angle of 2.5°, the dynamic pressure was much higher than the measured static pressure, and this pressure difference is estimated to be air resistance acting to prevent the door from being completely closed.

The Static Pressure Distribution and Flow Characteristics Inside the High-Pressure Swirl Spray (고압 스월분무 내부의 압력분포 및 유동특성에 대한 연구)

  • Moon, Seok-Su;Abo-Serie, Essam;Choi, Jae-Joon;Bae, Choong-Sik
    • Journal of ILASS-Korea
    • /
    • v.11 no.3
    • /
    • pp.168-175
    • /
    • 2006
  • The static pressure distribution and flow characteristics inside the high-pressure swirl spray were investigated by measuring the static pressure inside the spray and applying the computational fluid dynamics (CFD). The static pressure difference between inner and outer part of spray was measured at different axial locations and operating conditions using a piezo-resislive pressure transducer. To obtain the qualitative value of swirl motion at different operating conditions, the spray impact-pressure at the nozzle exit was measured using a piezo-electric pressure transducer, and the flow angle was measured using a microscopic imaging system. The flow characteristics inside the high pressure swirl spray was simulated by the 1-phase 3-dimensional CFD model. The effect of pressure alternations on spray development was discussed with macroscopic spray images and a mathematical liquid film model. The results showed that the static pressure drop is observed inside the swirl spray as a result of the dragged air motion and the centrifugal force of the air. The recirculation vortex inside the spray was also observed inside the swirl spray as a result of the adverse pressure gradient along the axial locations. The results of analytical liquid film model and macroscopic spray images showed that the static pressure structure is one of the main parameters affecting the swirl spray development.

  • PDF

Analysis on Ventilation Performance of Natural Ventilation Systems in Multi-Family Housing Using Blower Door Test (Blower Door Test를 이용한 공동주택 자연환기시스템의 환기성능 분석)

  • Kim, Min Seok;Auh, Jin Sun;Hong, Goopyo;Kim, Byungseon Sean
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.129-134
    • /
    • 2016
  • Today, natural ventilation systems are widely applied in multi-family housing. However, studies using the wind data trend line of the blower door test are insufficient. Purpose: Through this study, we will propose a computational method about ventilation performance of natural ventilation systems by conducting blower door test. Method: First, we sealed the gaps between the main systems including the natural ventilation system and conducted the blower door test. Next, the natural ventilation system was opened, the blower door test was conducted, and the difference in air flow rate between when closed and when opened was checked. Blower door test was carried out with a pressure difference of 50 Pa. Result: Therefore, the ventilation performance of the natural ventilation system was checked by drawing a trend line using the data to calculate the air flow rate at 2 Pa of the natural ventilation equipment standard pressure difference.

A Study on the Risk Assessment and Reduction of Initial Construction Cost in a Biosafety Laboratory According to Improvement of Supply and Exhaust Method (급배기 방식 개선에 따른 생물안전 밀폐시설의 Risk Assessment와 초기 건설비 저감에 대한 연구)

  • Hwang, Ji Hyun;Hong, Jin Kwan;Ju, Young Duk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.10
    • /
    • pp.534-539
    • /
    • 2013
  • In general, entire supply air of the BSL3 laboratory should be vented to the outside for its biosafety and the air conditioning system should always be operating to maintain a room pressure difference. In this regard, annual energy consumption is approximately five or ten times greater than the magnitude of the office building. In addition, to adjust room pressure difference to the set value efficiently, the supply and exhaust duct system are installed in each room of the BSL3 lab. Thus, initial construction cost is extremely high. In this study, multizone simulation is performed to estimate maintaining the appropriate room pressure difference in the case of changing model A (each room supply and exhaust system) to model B (each zone supply and exhaust system) for verification of the BSL3 lab biosafety. Also, in the case of these two models, the multizone simulation for three kinds of biohazard scenario is performed as part of risk assessment. The analysis of initial construction cost of two models is conducted for comparison. According to the studies, initial construction cost of model B is less than about 22% of existing model A. Moreover, biosafety of the BSL3 lab is still maintaining in the case of the two models.

Case Study of a Field Test for a Smoke Control System Using Sandwich Pressurization (샌드위치 가압을 이용하는 연기제어 시스템의 현장실험 사례 연구)

  • Kim, Jung-Yup;Ahn, Chan-Sol
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.87-92
    • /
    • 2016
  • Amid the growing number of high-rise complex buildings in Korea, efficient smoke prevention technology in a fire is required and as an alternative of a mechanical smoke control system in high-rise buildings, the use of a smoke control system using sandwich pressurization has been on the rise. In such a system, the appropriate pressure difference and the data for designing the air supply and exhaust flow rate are necessary to prevent the spread of smoke and offer a tenable evacuation environment. As part of such effort, this paper presents a field test process and result after testing a building where such a smoke control system using sandwich pressurization has been installed. A ventilation rate of 6 cycles per hour were applied to simulate the air exhaust flow rate on a fire floor and the air supply flow rate on the floors above and below the fire floor. As a result of the system operation, pressure difference of approximately 260 Pa between the 12th floor of a fire and the 13th floor was generated. The over pressure of the experiment has a serious effect on the evacuation or fire compartment so that it is necessary to examine the improvement.

A Study for Energy Separation of Vortex Tube Using Air Supply System(II) - the effect of surface insulation - (공기공급 시스템에 적응되는 Vortex Tube의 에너지 분리특성에 관한 연구(II) -표면의 단열효과에 따른 영향-)

  • 방창훈;추홍록;유갑종
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.3-9
    • /
    • 1999
  • The vortex tube is a simple device which splits a compressed gas stream into a cold stream and a hot stream without any chemical reactions. Recently, vortex tube is widely used to local cooler of industrial equipments and air supply system. In this study, the insulation effect of surface on the efficiency of vortex tube was performed experimentally. The experiment is carried out for nozzle area ratio of 0.194, diameter ratio of cold end orifice of 0.6 and input pressure ranging from 0.2Mpa to 0.5Mpa. The purpose of this study is focused on the effect of surface insulation of vortex tube with the variation of cold air mass flow ratio. The results indicate that the temperature difference of cold and hot air are higher about 12% and 30% than that of not insulated vortex tube respectively. Furthermore, for the insulated vortex tube, the similarity relation for the prediction of cold end temperature as the function of cold air mass flow ratio and input pressure is obtained.

  • PDF

A Study for Pressure Difference and Critical Velocity by Pressurization of Elevator Shaft at High Rise Apartment (고층 공동주택의 승강로가압을 이용한 차압 및 방연풍속에 관한 연구)

  • Park, Kyung-Hwan;Yoon, Myong-O
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.89-93
    • /
    • 2011
  • It is not recommended that elevator use for egress at (super) high rise buildings because elevator shaft main roles to spread of fire smoke. But in North America used to protect this area by elevator shaft pressurization. These tests are performed at high rise apartment to verify that elevator shaft pressurization can protect to spread of fire smoke or not. and verify to used for egress at fire. Pressurization at elevator shaft make pressure difference of 50 Pa all floor at 150 CMM because this method have low friction loss from air flow. Also when dwelling door and elevator door are opened that critical velocity is performed to protect of back-layering from fire room for escape routs by 180 CMM. Therefore through out these pressurization tests by elevator shaft are estimated to have less overpressure because supply air difference are low between to satisfy critical velocity at one door opened and maintain to pressure difference all doors closed. Finally we verified that disable or residual people can use elevator for egress at fire by elevator shaft pressurization.