• 제목/요약/키워드: diethylpyrocarbonate

검색결과 21건 처리시간 0.022초

The Roles of Tryptophan and Histidine Residues in the Catalytic Activities $\beta$-Cyclodextrin Glucanotransferase from Bacillus firmus var. alkalophilus

  • Shin, Hyun-Dong;Kim, Chan;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권1호
    • /
    • pp.62-69
    • /
    • 1999
  • In order to investigate the critical amino acid residues involved in the catalytic activities of $\beta$-cyclodextrin glucanotransferase ($\beta$-CGTase) excreted by Bacillus firmus var. alkalophilus, the amino acid residues in $\beta$-CGTase were modified by various site-specific amino acid modifying reagents. The cyclizing and amylolytic activities of $\beta$-CGTase were all seriously reduced after treatment with Woodward's reagent K (WRK) modifying aspartic/glutamic acid, N-bromosuccinimde (NBS) modifying tryptophan, and diethylpyrocarbonate (DEPC) modifying histidine residues. The roles of tryptophan and histidine residues in $\beta$-CGTase were further investigated by measuring the protection effect of various substrates during chemical modification, comparing protein mobility in native and affinity polyacrylamide gel electrophoresis containing soluble starch, and comparing the $K_m$ and $V_{max}$ values of native and modified enzymes. Tryptophan residues were identified as affecting substrate-binding ability rather than influencing catalytic activities. On the other hand, histidine residues influenced catalytic ability rather than substrate-binding ability, plus histidine modification had an effect on shifting the optimum pH and pH stability.

  • PDF

Purification and Characterization of a Chitinase from Cytophaga sp. HJ Isolated from Sea Sand

  • Lee, Dong-Mi;Noh, Hee-Jung;Lee, Kang-Man
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권6호
    • /
    • pp.839-846
    • /
    • 1999
  • An extracellular chitinase-producing bacterial strain induced by colloidal chitin was isolated from sea sand and was identified to be a member of the genus Cytophaga. The chitinase was purified successively by 30-60% ammonium sulfate fractionation, and DEAE-Bio gel A column, Octyl-Sepharose CL-4B column, and DEAE-Bio gel A column chromatographies. The enzyme had a molecular mass of 59.75 kDa, and the amino terminal amino acid sequence was ATPNAPVISW MPTDXXLQNXS. The enzyme acted better on colloidal chitin as a substrate than on chitosan. For colloidal chitin and chitosan (Degree of Acetylation, 15-25%), $K_{cat}$ values were 0.60U/mg and 0.08U/mg, respectively. HPLC analysis of the enzymatic reaction products showed that the chitinase produced mostly N-acetyl-D-glucosarnine and di-N-acetylchitobiose. The optimum temperature and pH for the enzyme were $50^{\circ}C$ and 4.0, respectively. N-Bromosuccinimide and $Hg^{2+}$ inhibited the chitinase activity as much as 90%, and $Sb^{3+}$, diethylpyrocarbonate, and $Ag^{+}$ inhibited it by 50-70%.

  • PDF

An Essential Histidine Residue in the Catalytic Mechanism of the Rat Kidney γ-Glutamyl Transpeptidase

  • Kim, Soo-Ja;Ko, Moon-Kyu;Chai, Kyu-Yun;Cho, Seong-Wan;Lee, Woo-Yiel
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권2호
    • /
    • pp.271-275
    • /
    • 2007
  • γ -Glutamyl transpeptidase (EC 2.3.2.2) plays a key role in glutathione metabolism by catalyzing the transfer of the γ -glutamyl residue and hydrolysis of glutathione. The functional residues at the active site of the rat kidney γ -glutamyl transpeptidase were investigated by kinetic studies at various pH, the treatment of diethylpyrocarbonate (DEPC), and photooxidation in presence of methylene blue. An ionizable group affecting the enzymatic activity with an apparent pKa value of 7.1, which is in the range of pKa values for a histidine residue in protein, was obtained by examining the pH-dependence of kinetic parameters. The pH effect on the photoinduced inactivation rate of the enzyme corresponds to that expected for the photooxidation of the free histidine. The involvement of a histidine in the catalytic site of the enzyme was further supported by DEPC modification accompanied by an increase in absorbance at 240 nm, indicating the formation of Ncarbethoxyhistidine. The histidine located at the position of 382 in the precursor of the enzyme is primarily suspected based on the amino acid sequence alignment of the transpeptidases from various organisms.

Fuculose-1-Phosphate Aldolase of Methanococcus jannaschii: Reaction of Histidine Residues Connected with Catalytic Activities

  • Lee, Bong-Hwan;Yu, Yeon-Gyu;Kim, Bok-Hwan;Choi, Jung-Do;Yoon, Moon-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권5호
    • /
    • pp.838-844
    • /
    • 2001
  • The enzyme Fuc aldolase from Methanococcus jannaschii that catalyzes the aldol condensation of DHAP and L-lactaldehyde to give fuculose-1-phosphate was inactivated by DEP. The inactivation was pseudo first-order in the enzyme and DEP, which was biphasic. A pseudo second-order rate constant of 120$M^{-1}min^{-1}$ was obtained at pH 6.0 and $25{\circ}C$. Quantifying the increase in absorbance at 240nm showed that four histidine residues per subunit were modified during the nearly complete inactivation. The statistical analysis and the time course of the modification suggested that two or three histidine residues were essential for activity. The rate of inactivation was dependent on the pH, and the pH inactivation data implied the involvement of the amino acid residue with a $pK_a$ value of 5.7. Fuc aldolase was protected against DEP inactivation by DHAP, indicating that the histidine residues were located at the active site of Fuc aldolase. DL-Glyceraldehyde, as an alternative substrate to L-lactaldehyde, showed no specific protection for the Fuc aldolase.

  • PDF

넙치(Paralichthys olivaceus) 신장에서 Poly (I:C)의 단기 및 장기적인 면역 효과 (Short and long-term immune effects of Poly (I:C) in kidney of Olive flounder (Paralichthys olivaceus))

  • 성민재;박영진
    • 한국어병학회지
    • /
    • 제37권1호
    • /
    • pp.123-132
    • /
    • 2024
  • Viral diseases cause enormous economic losses to the olive flounder (Paralichthys olivaceus) aquaculture industry in Korea. This study aimed to identify immune-related genes expressed in the kidney of olive flounder injected with Polyinosinic-polycytidylic acid (Poly (I:C)). Thirty fish were divided into two groups by intraperitoneal injection of 100µl of diethylpyrocarbonate-treated water or poly I:C per fish. Kidney tissues at day 3 and 30 after the injection were used for RNA-seq analysis to identify differentially expressed genes (DEGs). Poly I:C group upregulated il8, cfh, tnfaip2b, c3b.2, ly6d and cd38 genes at 3 days post-injection. Additionally, cd22, ccl34a.3, c9, cxcl19, ccl27a, ccl7, and cfh genes were upregulated at 30 days post-injection. Differential expression gene analysis showed that poly I:C has both short and long-term immune effects in olive flounder. This study provides a theoretical basis for understanding the molecular mechanism of the short and long-term immune effects of poly I:C.

Chemical Modification of 5-Lipoxygenase from the Korean Red Potato

  • Kim, Kyoung-Ja
    • BMB Reports
    • /
    • 제33권2호
    • /
    • pp.172-178
    • /
    • 2000
  • The lipoxygenase was purified 35 fold to homogeneity from the Korean red potato by an ammonium sulfate precipitation and DEAE-cellulose column chromatography. The simple purification method is useful for the preparation of pure lipoxygenase. The molecular weight of the enzyme was estimated to be 38,000 by SDS-polyacrylamide gel electrophoreses and Sepharose 6B column chromatography. The purified enzyme with 2 M $(NH_4)_2SO_4$ in a potassium phosphate buffer, pH 7.0, was very stable for 5 months at $-20^{\circ}C$. Because the purified lipoxygenase is very stable, it could be useful for the screening of a lipoxygenase inhibitor. The optimal pH and temperature for lipoxygenase purified from the red potato were found to be pH 9.0. and $30^{\circ}C$, respectively. The Km and Vmax values for linoleic acid of the lipoxygenase purified from the red potato were $48\;{\mu}M$ and $0.03\;{\mu}M$ per minute per milligram of protein, respectively. The enzyme was insensitive to the metal chelating agents tested (2 mM KCN, 1 and 10mM EDTA, and 1 mM $NaN_3$), but was inhibited by several divalent cations, such as $Cu^{++}$, $Co^{++}$ and $Ni^{++}$. The essential amino acids that were involved in the catalytic mechanism of the 5-lipoxygenase from the Korean red potato were determined by chemical modification studies. The catalytic activity of lipoxygenase from the red potato was seriously reduced after treatment with a diethylpyrocarbonate (DEPC) modifying histidine residue and Woodward's reagent (WRK) modifying aspartic/glutamic acid. The inactivation reaction of DEPC (WRK) processed in the form of pseudo-first-order kinetics. The double-logarithmic plot of the observed pseudo-first-order rate constant against the modifier concentration yielded a reaction order 2, indicating that two histidine residues (carboxylic acids) were essential for the lipoxygenase activity from the red potato. The linoleic acid protected the enzyme against inactivation by DEPC(WRK), revealing that histidine and carboxylic amino acids residues were present at the substrate binding site of the enzyme molecules.

  • PDF

Identification of Oligosaccharides in Human Milk Bound onto the Toxin A Carbohydrate Binding Site of Clostridium difficile

  • Nguyen, Thi Thanh Hanh;Kim, Jong Woon;Park, Jun-Seong;Hwang, Kyeong Hwan;Jang, Tae-Su;Kim, Chun-Hyung;Kim, Doman
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권4호
    • /
    • pp.659-665
    • /
    • 2016
  • The oligosaccharides in human milk constitute a major innate immunological mechanism by which breastfed infants gain protection against infectious diarrhea. Clostridium difficile is the most important cause of nosocomial diarrhea, and the C-terminus of toxin A with its carbohydrate binding site, TcdA-f2, demonstrates specific abolishment of cytotoxicity and receptor binding activity upon diethylpyrocarbonate modification of the histidine residues in TcdA. TcdA-f2 was cloned and expressed in E. coli BL21 (DE3). A human milk oligosaccharide (HMO) mixture displayed binding with TcdA-f2 at 38.2 respond units (RU) at the concentration of 20 μg/ml, whereas the eight purified HMOs showed binding with the carbohydrate binding site of TcdA-f2 at 3.3 to 14 RU depending on their structures via a surface plasma resonance biosensor. Among them, Lacto-N-fucopentaose V (LNFPV) and Lacto-N-neohexaose (LNnH) demonstrated tight binding to TcdA-f2 with docking energy of −9.48 kcal/mol and −12.81 kcal/mol, respectively. It displayed numerous hydrogen bonding and hydrophobic interactions with amino acid residues of TcdA-f2.

Identification of Essential Histidines in Cyclodextrin Glycosyltransferase Isoform 1 from Paenibacillus sp. A11

  • Kaulpiboon, Jarunee;Pongsawasdi, Piamsook
    • BMB Reports
    • /
    • 제36권4호
    • /
    • pp.409-416
    • /
    • 2003
  • The isoform 1 of cyclodextrin glycosyltransferase (CGTase, EC 2.4.1.19) from Paenibacillus sp. A11 was purified by a preparative gel electrophoresis. The importance of histidine, tryptophan, tyrosine, and carboxylic amino acids for isoform 1 activity is suggested by the modification of the isoform 1 with various group-specific reagents. Activity loss, when incubated with diethylpyrocarbonate (DEP), a histidine modifying reagent, could be protected by adding 25 mM methyl-$\beta$-cyclodextrin substrate prior to the modification. Inactivation kinetics of isoform 1 with DEP resulted in second-order rate constants ($k_{inactivation}$) of $29.5\;M^{-1}s^{-1}$. The specificity of the DEP-modified reaction for the histidine residue was shown by the correlation between the loss of isoform activity and the increase in the absorbance at 246 nm of N-carbethoxyhistidine. The number of histidines that were modified by DEP in the absence and presence of a protective substrate was estimated from the increase in the absorbance using a specific extinction coefficient of N-carbethoxyhistidine of $3,200\;M^{-1}cm^{-1}$. It was discovered that methyl-$\beta$-CD protected per mole of isoform 1, two histidine residues from the modification by DEP. To localize essential histidines, the native, the DEP-modified, and the protected forms of isoform 1 were digested by trypsin. The resulting peptides were separated by HPLC. The peptides of interest were those with $R_t$ 11.34 and 40.93 min. The molecular masses of the two peptides were 5,732 and 2,540 daltons, respectively. When the data from the peptide analysis were checked with the sequence of CGTase, then His-140 and His-327 were identified as essential histidines in the active site of isoform 1.

Expression of Cyclodextrinase Gene from Paenibacillus sp. A11 in Escherichia coli and Characterization of the Purified Cyclodextrinase

  • Kaulpiboon, Jarunee;Pongsawasdi, Piamsook
    • BMB Reports
    • /
    • 제37권4호
    • /
    • pp.408-415
    • /
    • 2004
  • The expression of the Paenibacillus sp. A11 cyclodextrinase (CDase) gene using the pUC 18 vector in Escherichia coli JM 109 resulted in the formation of an insoluble CDase protein in the cell debris in addition to a soluble CDase protein in the cytoplasm. Unlike the expression in Paenibacillus sp. A11, CDase was primarily observed in cytoplasm. However, by adding 0.5 M sorbitol as an osmolyte, the formation of insoluble CDase was prevented while a three-fold increase in cytoplasmic CDase activity was achieved after a 24 h-induction. The recombinant CDase protein was purified to approximately 14-fold with a 31% recovery to a specific activity of 141 units/mg protein by 40-60% ammonium sulfate precipitation, DEAE-Toyopearl 650 M, and Phenyl Sepharose CL-4B chromatography. It was homogeneous by non-denaturing and SDS-PAGE. The enzyme was a single polypeptide with a molecular weight of 80 kDa, as determined by gel filtration and SDS-PAGE. It showed the highest activity at pH 7.0 and $40^{\circ}C$. The catalytic efficiency ($k_{cat}/K_m$) values for $\alpha$-, $\beta$-, and $\gamma$-CD were $3.0{\times}10^5$, $8.8{\times}10^5$, and $5.5{\times}10^5\;M^{-1}\;min^{-1}$, respectively. The enzyme hydrolyzed CDs and linear maltooligosaccharides to yield maltose and glucose with less amounts of maltotriose and maltotetraose. The rates of hydrolysis for polysaccharides, soluble starch, and pullulan were very low. The cloned CDase was strongly inactivated by N-bromosuccinimide and diethylpyrocarbonate, but activated by dithiothreitol. A comparison of the biochemical properties of the CDases from Paenibacillus sp. A11 and E. coli transformant (pJK 555) indicates that they were almost identical.

Aspergillus nidulans에서 분리된 키틴 탈아세틸화 효소활성에 영향을 미치는 아미노산 잔기 분석 (Analysis of Amino Acid Residues Involved in Activities of Chitin Deacetylase of Aspergillus nidulans)

  • 김종일;송다현
    • 미생물학회지
    • /
    • 제47권4호
    • /
    • pp.302-307
    • /
    • 2011
  • A. nidulans chitin deacetylase를 자가분해 용액으로부터 소수성 상호작용 컬럼 크로마토그래피와 이온 교환 컬럼 크로마토그래피를 통해 순수 분리하였다. 효소 활성에 관여하는 아미노산을 분석하기 위해 효소 단백질과 특정 아미노산 잔기에 작용하는 화학 수식제를 반응시켜 효소를 화학 수식하였다. histidine 잔기가 화학 수식된 효소는 효소활성을 100% 상실하였으며, arginine의 잔기 혹은 tyrosine 잔기는 100 ${\mu}M$보다 높은 농도의 수식제로 화학수식 되었을 때 효소활성이 감소하였다. Aspartic acid 혹은 glutamic acid의 carboxyl group 잔기의 화학수식은 효소활성의 상대적으로 작은감소를 나타냈다. 이것은 산성 아미노산의 잔기가 화학 촉매 반응에 직접 관여하지 않았거나 혹은 산성 아미노산 잔기는 효소단백질의 전반적인 구조에 영향을 미친다는 것을 추론할 수 있다. 이러한 결과는 효소 단백질의 촉매활성에 histidine, tyrosine 및 arginine 잔기가 중요한 역할을 담당하는 것을 의미한다.