• Title/Summary/Keyword: dietary additive

Search Result 202, Processing Time 0.023 seconds

Gut Microbiome and Gut Immunity in Broiler Chickens Fed Allium hookeri Root Powder from Day 10 to 28 (육계 사료 내 삼채뿌리분말 첨가가 장내 미생물 및 장관면역에 미치는 영향)

  • Woonhak Ji;Inho Cho;Sang Seok Joo;Moongyeong Jung;Chae Won Lee;June Hyeok Yoon;Su Hyun An;Myunghoo Kim;Changsu Kong
    • Korean Journal of Poultry Science
    • /
    • v.50 no.3
    • /
    • pp.171-185
    • /
    • 2023
  • This study was conducted to investigate the effects of supplementation of Allium hookeri (AH) root powder on the gut microbiome, immunity, and health in broiler chickens fed experimental diets from d 10 to 28. A total of 60 10-day-old Ross 308 broilers were weighed and assigned to two dietary treatments with 5 birds per cage in a randomized complete block design based on body weight. The two experimental diets consisted of a control diet based on corn-soybean meal and the control diet supplemented with 0.3% AH root powder. All birds were fed ad libitum with experimental diets and water for 18 d. At 28 d, two birds near the median weight from each cage were selected for cecal content and small intestinal tissue sample collection. The addition of AH changed the gut microbiome by increasing probiotic candidate beneficial bacteria such as Enterococcaceae, Lactobacillaceae, Limosilactobacillus, Cuneatibacter, and Ruminoccoides. Regarding gut immunity, the supplementation of AH resulted in changes in intestinal immune cells, including reduced CD3+CD4+ T cells, which are a type of helper T cell, in the small intestine of birds (P=0.049). Additionally, there was a tendency to increase the expression of antioxidant function-related gene such as GPX2 (P=0.060), but no significant changes were observed in cytokines such as IL1b, IL6, and IL10. Overall, the addition of AH root powder may have positive effects on the microbiome of the chickens. This may help promote gut health in broiler chickens at the age of d 10 to 28.

Effects of the Brown Seaweed Residues Supplementation on In Vitro Fermentation and Milk Production and Composition of Lactating Dairy Cows (미역부산물 첨가가 In Vitro 발효성상과 젖소의 산유량 및 유성분에 미치는 영향)

  • Baek, I.K.;Maeng, W.J.;Lee, S.H.;Lee, H.G.;Lee, S.R.;Ha, J.K.;Lee, S.S.;Hwang, J.H.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.373-386
    • /
    • 2004
  • This study was conducted to investigate effects of the brown seaweed residues supplementation on in vitro fermentation, and milk yield and milk composition of dairy cows. Therefore, two experiments consisting of an in vitro and an in vivo growth trial were used. In in vitro experiment, brown seaweed residues(BSR) was supplemented in basal diet with 0, 1, 2 and 4% respectively, and incubated for 3, 6, 9, 12, and 24 h. The pH value, ammonia-N and VFA were investigated. The pH value tended to increase with increasing BSR during the incubation. Particularly, pH was significantly higher in BSR treatments compared with control at 9 h(p < 0.05). While, ammonia-N concentration was not significantly different across treatments during the whole incubation. BSR supplementation did not affect total VFA production, but acetate was linearly increased in BSR treatments compared with control at 12 h(p < 0.05), and its concentration was highest(92.70 mM) in 4% BSR among treatments. The concentration of iso-butyrate tended to increase in BSR treatments in comparison to control during the incubation. In addition, the concentration of iso-valerate was higher in BSR treatments compared with control at 12 and 24 h. In growth trial, BSR was added(800 g/d/animaI) to diets of dairy cow. Dry matter intake was not affected by BSR supplementation, but daily milk yield(kg) significantly increased in BSR treatment compared with control(p < 0.05). However, milk composition(%) and milk yield(kg) were not significantly different between treatments. Milk fat(% and kg/d) tended to slightly decrease in BSR treatment compared with control(3.59% and 1.06 kg/d vs. 3.32% and 1.01 kg/d), The contents of C16:0 and C20:4 in milk significantly increased in BSR treatment compared with control reflecting from dietary fatty acid composition. The content of C18:0 in milk which is end product of biohydrogenation of CI8 unsaturated fatty acids in the rumen significantly increased in BSR treatment compared with control(p < 0.05). C18:2 content in milk tended to decrease, but tended to increase trans-II C18:l and CLA contents in milk in BSR treatment compared with control. In conclusion, it could be summarized that BSR may stabilize rumen pH, and it could improve milk yield and CIA content in milk with more than 4% of diet. Therefore, BSR could be beneficially used in dairy diets as a feed additive.