• 제목/요약/키워드: diesel exhaust

검색결과 1,070건 처리시간 0.031초

디젤차량 배기 브레이크용 솔레노이드 밸브의 개발 (Development of Solenoid Valve for the Exhaust Brake of Diesel Engines)

  • 윤소남;함영복;조정대;류병순
    • 동력기계공학회지
    • /
    • 제7권4호
    • /
    • pp.19-24
    • /
    • 2003
  • Exhaust brake system for Diesel engines is composed of gate valve, pneumatic cylinder and exhaust brake valve with on-off solenoid. Exhaust brake valve which is core component of exhaust brake system should have characteristics such as high reliability and long life. In this paper. exhaust brake valve with on-off solenoid which is used for vehicle brake system was studied. For the performance evaluation of on-off solenoid, electromagnetic characteristics and dynamic characteristics are analyzed. As a basic study for the performance improvement of exhaust brake system, pneumatic circuit and pneumatic valve with on-off solenoid were suggested and the performance of the pneumatic valve was evaluated through tests.

  • PDF

디젤 연소물질에 노출된 광산 근로자에서 소변 중 1-hydroxypyrene을 이용한 생물학적 모니터링 (Biological monitoring of miners exposed to diesel exhaust using urinary 1-hydroxypyrene)

  • 이종성;최병순;신재훈;신용철;김기웅
    • 한국산업보건학회지
    • /
    • 제17권2호
    • /
    • pp.144-152
    • /
    • 2007
  • Diesel vehicles are a significant source of fine carbon particle emissions including polynuclear aromatic hydrocarbons (PAHs). Urinary 1-hydroxypyrene (1-OHP) is firmly established as a useful biomarker of PAHs uptake in human. To investigate the exposure effect of PAHs in miners according to using diesel truck which was for transportation of ore, we measured urinary 1-OHP as the PAHs exposure biomarker, and analyzed the relationship between urinary 1-OHP concentration and using diesel truck. The study was performed on 118 workers (56 miners in factories using diesel truck, 62 miners in factories non-using diesel truck) and 21 controls. Urine samples were obtained at the end of shift on the survey day. There was no significance in comparison with the mean concentrations on urinary 1-OHP by age, BMI, work duration, smoking, drinking and ventilation type. But significant difference were found among urinary 1-OHP concentrations on factories according to using diesel truck (p=0.000). The urinary 1-OHP mean concentration on underground miners using diesel truck ($0.54{\mu}mol/mol$ creatinine) was higher than those of surface miners using diesel truck ($0.33{\mu}mol/mol$ creatinine, p=0.028), underground miners non-using diesel truck ($0.32{\mu}mol/mol$ creatinine, p=0.001) and controls ($0.22{\mu}mol/mol$ creatinine, p=0.000). In comparison with using status diesel truck, the urinary 1-OHP mean concentration of underground miners using diesel trucks was higher than those of other mine status. The study results would be beneficial to future environmental and biological studies of PAHs exposure to diesel exhaust in mines.

커먼레일식 디젤기관의 EGR율과 바이오디젤 혼합율에 따른 연소 및 배기 특성 (Effects of Bio-diesel blending rate on the Combustion and Emission Characteristics in a Common Rail Diesel Engine with EGR rate)

  • 윤삼기;최낙정
    • 동력기계공학회지
    • /
    • 제18권2호
    • /
    • pp.5-11
    • /
    • 2014
  • The purpose of this study is to investigate the specific characteristics of combustion and exhaust emissions on a 4-cylinder common rail diesel engine as EGR rate and the rate of blended bio-diesel was altered. Bio-diesel fuel which is a sort of alternative fuels can be adapted to diesel engine directly without modifying. This study was performed to 2000rpm of engine speed with torque 30Nm while EGR rate and the rate of blended bio-diesel was changed. Decreasing combustion pressure and increasing the rate of heat were occurred when we had changed the EGR rate on the 20% of bio-diesel blended diesel fuel. The maximum pressure of combustion and the IMEP became higher as the EGR rate and the rate of blended bio-diesel were changed. Exhaust gas temperature was increased the higher rate of the blended bio-diesel under the fixed EGR rate. However, it went down as the EGR rate increased. The amounts of CO and Soot were reduced with increasing the rate of the blended bio-diesel without changing EGR rate and raised with increasing of the EGR rate. On the fixed EGR rate, NOx was increased along with growing the rate of the bio-diesel. On the other hand, it was decreased while EGR rate were going up.

순수 DME의 직접분사식 디젤기관의 성능 및 배기가스 특성 (Engine Performance and Exhaust Emissions Characteristics of DI Diesel Engine Operated with Neat Dimethyl Ether)

  • 표영덕;이영재;김강출;김문헌
    • 대한기계학회논문집B
    • /
    • 제27권5호
    • /
    • pp.589-595
    • /
    • 2003
  • DME(Dimethyl ether) is an oxygenated fuel with a octane number higher than that of diesel oil. It meets the ULEV emission regulation and reduces the smoke to almost zero when used in a diesel engine. In the present study, engine performance and exhaust emissions were investigated with a conventional DI diesel engine which has a jerk type injection pump. Test results showed that the power with DME were almost same as that of pure diesel oil, and the brake thermal efficiency increased a little. Also, smoke index from DME engine showed nearly zero level, but NO$_{x}$ was increased compare to diesel oil.

디젤기관의 배기 배출물에 미치는 스크러버형 EGR 시스템 재순환 배기의 영향에 관한 연구 (A Study on the Effect of Recirculated Exhaust Gas with Scrubber EGR System upon Exhaust Emissions in Diesel Engines)

  • 배명환;하정호
    • 대한기계학회논문집B
    • /
    • 제24권9호
    • /
    • pp.1247-1254
    • /
    • 2000
  • The effects of recirculated exhaust gas on the characteristics of $NO_x$ and soot emissions under a wide range of engine load have been experimentally investigated by a water-cooled, four-cylinder, indirect injection, four cycle and marine diesel engine operating at two kinds of engine speeds. The simultaneous control of $NO_x$ and soot emissions in diesel engines is targeted in this study. The EGR system is used to reduce $NO_x$ emissions, and a novel diesel soot removal device with a cylinder-type scrubber for the experiment system which has 6 water injectors(A water injector has 144 nozzles in 1.0 mm diameter) is specially designed and manufactured to reduce the soot contents in the recirculated exhaust gas to intake system of the engines. The intake oxygen concentration and the mean equivalence ratio calculated by the intake air flow and fuel consumption rate, and the exhaust oxygen concentration measured are used to analyse and discuss the influences of EGR rate on $NO_x$ and soot emissions. The experiments are performed at the fixed fuel injection timing of $15.3^{\circ}$ BTDC regardless of experimental conditions. It is found that $NO_x$ emissions are decreased and soot emissions are increased owing to the drop of intake oxygen concentration and exhaust oxygen concentration, and the rise of equivalence ratio as the EGR rate rises.

스크러버형 EGR시스템 디젤기관의 성능 및 배기 배출물에 미치는 재순환 배기온도의 영향 (Effect of Recirculated Exhaust Gas Temperature on Performance and Exhaust Emissions in Diesel Engines with Scrubber EGR System)

  • 배명환;하태용;류창성;하정호;박재윤
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.75-82
    • /
    • 2002
  • The effects of intake mixture temperature on performance and exhaust emissions under four kinds of engine loads were experimentally investigated by using a four-cycle four-cylinder, swirl chamber type, water-cooled diesel engine with scrubber EGR system operating at three kinds of engine speeds. The purpose of this study is to develop the scrubber exhaust gas recirculation(EGR) control system for reducing $NO_x$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce NOx emissions. And a novel diesel soot-removal device with a cylinder-type scrubber which has five water injection nozzles is specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The influences of cooled EGR and water injection, however, would be included within those of scrubber EGR system. In order to study the effect of intake mixture temperature, a intake mixture heating device which has five heating coils is made of a steel drum. It is found that the specific fuel consumption rate is considerably elevated by the increase of intake mixture temperature, and that NOx emissions are markedly decreased as EGR rates are increased and intake mixture temperature is dropped, while soot emissions are increased with increasing EGR rates and intake mixture temperature.

  • PDF

대형 디젤엔진용 배기밸브의 단조공정에 관한 연구 (Investigation of the Forging Process of Exhaust Valve for Large Diesel Engine)

  • 김동권;김동영;석진익;류석현;김동진;김병훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.627-632
    • /
    • 2001
  • Nimonic 80A superalloy with high-temperature strength and high corrosion-resistance is used in jet engine for aircraft, gas turbine for power plant and marine diesel engine, etc. To develop the manufacturing process of exhaust valve for large diesel engine using Nimonic 80A, various mechanical tests, such as hot compression, microstructure and hardness test have been performed. This results effectively used to set the reasonable forging conditions while hot forging of Nimonic 80A superalloy. Open die and closed die forging experiments are carried out from ESR ingot and finally get a good shaped exhaust valve product.

  • PDF

소형엔진의 배출가스측정방법에 따른 질소산화물 및 매연에 관한 연구 (A Study on NOx and Smoke by Exhaust Gas Measuring Method of Light-Duty Engine)

  • 한영출;나완용;오용석;문병철;박봉규;박귀열
    • 한국공작기계학회논문집
    • /
    • 제10권3호
    • /
    • pp.7-11
    • /
    • 2001
  • Recently, increasing usage of diesel vehicle, many countries try to reduce the pollutant materials by emission regulation standard. Particularly in our country, the supplement ration of diesel vehicle is high, and air pollution by vehicle exhaust gas is very serious. So, in study, we tested exhaust gas by various mode in-light duty diesel engine. Therefore, we can know about NOx and smoke seriousness.

  • PDF

터보과급 디이젤기관의 성능에 관한 실험적 연구 (An Experimental Study on the Performance of Turbocharged Diesel Engine)

  • 채재우;정성찬;백중현
    • 한국자동차공학회논문집
    • /
    • 제2권6호
    • /
    • pp.76-86
    • /
    • 1994
  • Combustion of diesel engine depends on the mixing of air and evaporating fuel during ignition delay greatly. Variation of air-fuel mixing rate and ignition delay for engine operating condition causes difference of combustion, performance and exhaust emissions. This study is investigated in a turbocharged diesel engine of IDI swirl chamber type. In the results, As injection timing is advanced until $12.6^{\circ}$ BTC, ignition delay decreases. NOx concentration and smoke level in exhaust gas increases for advanced injection timing Ignition delay, combustion period, pressure rise rate and exhaust gas temperature are increased with increasing engine speed. And ignition delay at high load is more decreased than that at low load. Ignition delay and combustion period are decreased with increasing intake pressure. Power increases, temperature and CO, NOx concentration in exhaust gas decreases as intake pressure increases. With increasing load, ignition delay is decreased and combustion period, motoring pressure are increased.

  • PDF

직분식 예혼합 압축착화 디젤엔진의 운전조건과 연료조성에 따른 연소 및 배기 특성 (The Characteristics of Combustion and Exhaust Emission according to Operating Condition and Fuel Composition in a Direct Injection Type HCCI Diesel Engine)

  • 이기형;류재덕;이창식
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.10-16
    • /
    • 2004
  • The Homogeneous Charge Compression Ignition (HCCI) engine has advantage for reducing the NOx and P.M. simultaneously. Therefore, HCCI engine is receiving attention as a low emission diesel engine concept. This study was carried out to investigate the characteristics of combustion and exhaust emission for operating conditions in a direct injection type of HCCI engines such as supercharged and naturally aspirated using diesel fuel and additive. From the experimental result, we found that cool flame was always appeared and also it was difficult to control combustion characteristics by changing the injection timing in HCCI. In addition, at the lean air-fuel ratio and high speed range, it was observed that charging air pressure, additive or increasing intake air temperature is effective to increase combustion performance and reduce exhaust emission. We concluded that chemical reaction by the increasing intake air temperature or additive without physical improvement has limitation for reduction of exhaust emission.