• Title/Summary/Keyword: diesel engine injector

Search Result 134, Processing Time 0.027 seconds

Feasibility Study on Robust Calibration by DoE to Minimize the Exhaust Emission Deviations from Injector Flow Rate Scatters (DoE를 이용한 인젝터 유량 편차에 의한 배출가스 편차에 대한 강건 엔진 매핑 가능성의 검토)

  • Chang, Jin-Seok;Cheong, Jae-Hoon;Jo, Chung-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.134-143
    • /
    • 2008
  • The hardware scatters as well as the engine parameters calibration have strong influences on exhaust emissions in recent diesel engines. In this research DoE(Design of Experiments) optimizations were done to study the possibility of minimizing the emission deviations caused by flow rate scatters of the injectors. It has been shown that the optimization of engine calibration, which minimizes the emission deviations, is feasible by establishing a target function representing the emission deviations for test results of maximum, mean and minimum flow rate injectors. It has also been shown that optimization of both emission deviations and emission level is possible by sequential DoE optimizations of the target functions representing the emission level and the emission deviations respectively with the appropriate boundary limits.

A Study on the Characteristics of Exhaust Emissions in Diesel Engines with Scrubber EGR System (스크러버형 EGR시스템 디젤기관의 배기 배출형 특성에 관한 연구)

  • 하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.481-489
    • /
    • 1998
  • The effects of recirculated exhaust gas on the characteristics of fuel economy combustion and exhaust emissions have been experimentally investigated by a four-cylinder four cycle indirect injection water-cooled and marine diesel engine operating at several loads and speeds. in order to reduce the soot contents in the recirculated exhaust gas to intake system of the engine a novel diesel soot removal system with a cylinder-type scrubber which has 6 water injectors(A water injector has 144 nozzles in 1.0 mm diameter) is specially designed and manufactured for the experiment system The experiments in this study are performed at the fixed fuel injection timing of $15.3^{\circ}$ BTDC regardless of experimental conditions, The brake specific fuel consumption rate is slightly fluctuated with EGR in the range of experimental conditions, The maximum value of premixed combustion for the rate of heat release is decreased with EGR at engine load 25% and the ignition is slightly delayed with EGR at engine load 100% NOx emissions are markedly decreased with EGR especially at high loads while soot emissions are increased as the EGR rate rises.

  • PDF

Effect of Ultra-high Injection Pressure on Combustion and Emission Characteristics in a Single-cylinder Diesel Engine (초고압 분사 압력 적용에 따른 단기통 디젤 엔진에서의 연소 및 배기 특성에 관한 연구)

  • Cho, Wonkyu;Kang, Seungwoo;Bae, Choongsik;Kim, Youngho
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.41-44
    • /
    • 2015
  • Experimental study was conducted to investigate the effect of ultra-high injection pressure on combustion and emission characteristics in a single-cylinder diesel engine. Electronically controlled ultra-high pressure fuel injection system consistently supplied the fuel of ultra-high pressure up to 250 MPa. Various injection pressures, 40 to 250 MPa, were applied and compared. A injector with eight identical nozzle holes which have diameter of $105{\mu}m$ was used. The results showed high potential to improve the nitrogen oxide (NOx) and particulate matter (PM) trade-off relationship with an ultra-high injection pressure and the exhaust gas recirculation (EGR).

  • PDF

A Study on the Injection Characteristics of Urea Solution to Improve deNOx Performance of Urea-SCR Catalyst in a Heavy Duty Diesel Engine (대형 디젤 엔진용 요소분사 SCR촉매의 deNOx 성능향상을 위한 요소수용액의 분사특성 연구)

  • Jeong, Soo-Jin;Lee, Chun-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.165-172
    • /
    • 2008
  • Urea-SCR, the selective catalytic reduction using urea as reducing agent, has been investigated for about 10 years in detail and today is a well established technique for deNOx of stationary diesel engines. In the case of the SCR-catalyst a non-uniform velocity and $NH_3$ profile will cause an inhomogeneous conversion of the reducing agent $NH_3$, resulting in a local breakthrough of $NH_3$ or increasing NOx emissions. Therefore, this work investigates the effect of flow and $NH_3$ non-uniformities on the deNOx performance and $NH_3$ slip in a Urea-SCR exhaust system. From the results of this study, it is found that flow and $NH_3$ distribution within SCR monolith is strongly related with deNOx performance of SCR catalyst. It is also found that multi-hole injector shows better $NH_3$ uniformity at the face of SCR monolith face than one hole injector.

Analysis of Sensitivity Characteristics with AMESim Model for Piezo Injector (AMESim기반 피에조 인젝터용 해석모델의 민감도 특성 해석)

  • Jo, Insu;Kwon, Jiwon;Lee, Jinwook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.17-25
    • /
    • 2013
  • Performance of DI diesel engine with high fuel injection method is directly related to the emission characteristics and fuel consumption. At present, diesel injection system with piezo element is replacing conventional solenoid type due to their faster electro-mechanical properties. In this study, it was investigated the sensitivity characteristics regarding internal hydraulic modeling based on the AMESim environment of piezo-driven injector The analytic parameter for this study defined such as In/Out orifice, injection hole's diameter and driven voltage on piezo stack. As the results, it was shown that these parameter influence on a fast response characteristics of piezo-driven injector. Also we found fuel pressure recovery time is faster about 0.1 ms due to larger IN orifice diameter. And larger OUT orifice diameter occurs maximum pressure drop with faster its timing of about 0.2 ms.

Technology for Reducing NOx and Soot Particulate using EGR with Water Emulsified Fuel in Diesel Engines (물혼합 연료 및 EGR의 조합에 의한 디젤기관의 질소산화물과 매연미립자 동시저감 기술에 관한 연구)

  • 박권하;박태인;김기형
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.356-363
    • /
    • 1997
  • Many research works have been carried out to investigate the factors governing the performance of diesel engine. The area of the study has been focused on reducing both of NOx and smoke because of many difficulties to reduce them simultaneously in diesel engines. One of the efforts is an application of EGR technology to reduce NOx emission, which is very effective, but increases other emissions and makes fuel economy worse. In order to solve the problem, EGR is employed with water emulsified fuel and tested in this paper. Emulsified fuel is produced by centrifugal mixer and the amount of water is controlled by water injector and pulse generator, and EGR rate is controlled with 6-step control valve. The chamber pressure, fuel consumption and emissions are measured with various values of both EGR and water mixing rate, The results show that NOx emission is reduced much rather and smoke is also reduced simultaneously.

  • PDF

Investigation on Diesel Injection Characteristics of Natural Gas-Diesel Dual Fuel Engine for Stable Combustion and Efficiency Improvement Under 50% Load Condition (천연가스-디젤 혼소 엔진의 50% 부하 조건에서 제동효율 및 연소안정성 개선을 위한 디젤 분무 특성 평가)

  • Oh, Sechul;Oh, Junho;Jang, Hyungjun;Lee, Jeongwoo;Lee, Seokhwan;Lee, Sunyoup;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.45-53
    • /
    • 2022
  • In order to improve the emission of diesel engines, natural gas-diesel dual fuel combustion compression ignition engines are in the spotlight. In particular, a reactivity controlled compression ignition (RCCI) combustion strategy is investigated comprehensively due to its possibility to improve both efficiency and emissions. With advanced diesel direct injection timing earlier than TDC, it achieves spontaneous reaction with overall lean mixture from a homogeneous mixture in the entire cylinder area, reducing nitrogen oxides (NOx) and particulate matter (PM) and improving braking heat efficiency at the same time. However, there is a disadvantage in that the amount of incomplete combustion increases in a low load region with a relatively small amount of fuel-air. To solve this, sensitive control according to the diesel injection timing and fuel ratio is required. In this study, experiments were conducted to improve efficiency and exhaust emissions of the natural gas-diesel dual fuel engine at low load, and evaluate combustion stability according to the diesel injection timing at the operation point for power generation. A 6 L-class commercial diesel engine was used for the experiment which was conducted under a 50% load range (~50 kW) at 1,800 rpm. Two injectors with different spray patterns were applied to the experiment, and the fraction of natural gas and diesel injection timing were selected as main parameters. Based on the experimental results, it was confirmed that the brake thermal efficiency increased by up to 1.3%p in the modified injector with the narrow-angle injection added. In addition, the spray pattern of the modified injector was suitable for premixed combustion, increasing operable range in consideration of combustion instability, torque reduction, and emissions level under Tier-V level (0.4 g/kWh for NOx).

Effect of Fuel Nozzle Configuration on the Reduction of NOx Emission in Medium-speed Marine Diesel Engine (연료분사 노즐 형상이 선박용 중형 디젤 엔진의 NOx에 미치는 영향 연구)

  • Yoon, Wook-Hyeon;Kim, Byong-Seok;Ryu, Sung-Hyup;Kim, Ki-Doo;Ha, Ji-Soo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.13-14
    • /
    • 2005
  • Multi-dimensional combustion analysis and experiment has been carried out to investigate the effects of the injector nozzle hole diameter and number on the NOx formation and fuel consumption in HYUNDAI HiMSEN engine. The behavior of spray and combustion phenomena in diesel engine was examined by FIRE code. Wave breakup and Zeldovich models were adopted to describe the atomization characteristics and NOx formation. Wallfilm model suggested by Mundo, et al. and auto-ignition model suggested by Theobald and Cheng were adopted to investigate the spray-wall interaction characteristics and ignition delay. The information of spray angle and spray tip penetration length was extracted from fuel spray visualization experiment and the fuel injection rate profile was extracted from fuel injection system experiment as an input and verification data for the combustion analysis. Next, the nine different nozzle configurations were simulated to evaluate the effect of injector hole diameter and number on the NOx formation and fuel consumption.

  • PDF

A High Pressure Fuel Control and its Injection Characteristics (고압 연료 제어와 분사 특성)

  • Kim, S.H.;Lee, Y.G.;Kim, J.U.;Kim, E.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.123-133
    • /
    • 1995
  • An injection control valve(ICV) was designed to control the fuel flow between a common rail and an injector with two commercial solenoids. To improve the performance of ICV, the characteristic method was applied. With this method, the flow characteristics in the ICV and the injector were studied and the parameters which affect the injection characteristics were also studied. From this study, following results were obtained. The injection duration can be controlled and with modifications of the effective valve stroke of ICV, the injection quantity and duration can be reduced to desired amount. Also the injection quantity and pressure can be controlled by reducing the hole size of the injector without the variation of the injection duration. For some conditions, the desired injection characteristics can be obtained by the changes of the valve timing, the effective valve stroke, the open pressure of the injector and the hole size of the injector.

  • PDF

Diesel Engine Intake Port Analysis Using Reverse-engineering Technique (리버스 엔지니어링을 통한 디젤엔진 흡기포트의 성능 비교)

  • Kim, Chang-Su;Park, Sung-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.502-507
    • /
    • 2015
  • In this paper, we built a three-dimensional model by applying reverse engineering techniques on targeting the intake port of 2900cc class diesel engine before that three-dimensional design technique is applied. The performance of the intake port is predicted and analysed using the computational flow analysis. Flow Coefficient and Swirl Ratio have been analyzed for two intake port models. One is the intake port for the diesel engine with plunger-type fuel system, and the other is for the diesel engine with CRDI fuel system. Computational result shows that the Flow Coefficient of the intake port with CRDI fuel system is increased upto 10 percentage compared with that with plunger-type. Also, the intake port with plunger-type has high Swirl Ratio at high valve lift, and the intake port with CRDI fuel system has high Swirl Ratio at relatively low valve lift. It is believed that because of high performance of the fuel injector, the intake port with CRDI fuel system is designed for more air amount and not much swirl flow at high valve lift. However, high swirl flow is required at low valve lift for initial fuel and air mixing. The result of this study may be useful for the re-manufacturing industry of automotive parts.