• Title/Summary/Keyword: dielectric mixing models(DDMs)

Search Result 2, Processing Time 0.017 seconds

A Study on the Estimation of Physical Parameters of Unsaturated Porous Media in the Laboratory (불포화 다공질매질의 물성치 측정을 위한 실험적 연구)

  • 김만일
    • The Journal of Engineering Geology
    • /
    • v.14 no.2
    • /
    • pp.169-177
    • /
    • 2004
  • The permeation movements of groundwater recharge and contaminate materials receive a eat effect due to porosity and effective porosity of porous media which is composing underground consisted of saturation and unsaturated states. This study developed Frequency Domain Reflectometry(FDR) system and measurement sensor, and then carried out the laboratory experiments to measure effective porosity for unsaturated porous media. Also, I suggested dielectric mixing models(DMMs) which can calculate the effective porosity from relation of measured dielectric constants. In the experimental results the extent range of effective porosity of standard sand and river sand which are unsaturated soil sample were measured in about 65∼85 % for porosity. In relation of effective porosity and porosity, especially, effective porosity confirmed that displays decreasing a little tendency as porosity increases. This is because unsaturated soil did not reach in saturation enough by air of very small amount that exist in pore between soil particles.

An experimental approach for estimating the porosity and effective porosity of porous media by permittivity methods

  • Nishigaki M.;Komatsu M.;Kim M.-I.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.703-710
    • /
    • 2003
  • In the sub-surface environments, detection of the movement of contaminant substances and recharge of groundwater by rainfall are very important factors which contain porosity and effective porosity of porous media. In this paper, the applicability of permittivity methods and proposed dielectric mixing models (DDMs) are discussed. This study showed that the ratio of effective porosity to porosity of Toyoura and River sands were 0.856 and 0.843. From the relationships between the relative porosity and effective porosity, all measured values can be confirmed to outside the range to about 0.800 for Toyoura and River sands under all experiments by FDR and FDR-V systems. In the study, this permittivity equipment can be considered to be good enough to measure determining the physical parameters of saturated soils. Consequently, this permittivity method can be contributed to estimate a porosity and effective porosity of saturated porous media because it is easy and instantaneous than previous in-situ methods.

  • PDF