• 제목/요약/키워드: die temperature

검색결과 754건 처리시간 0.046초

포트홀 다이를 이용한 개량된 Al7003 중공압출재의 접합압력결정 (Determination of Welding Pressure in the Porthole Die Extrusion of Improved Al7003 Hollow Section Tubes)

  • 정충식;조형호;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.74-77
    • /
    • 2000
  • Porthole die extrusion has a great advantage in the forming of hollow section tubes difficult to produce by conventional extrusion with a mandrel on the stem. Because of the complicated structure of die assembly, extrusion process as a forming of hollow section tubes has been investigated experimentally Therefore, analytic approaches that are useful in profitable die design and in the improvement of productivity are inevitably demanded Welding strength is affected by many parameters, which are such as extrusion ratio, extrusion speed, die shape, porthole number, bearing length, billet temperature and mandrel shape. In this paper, the parameters, which are such as billet temperature, bearing length and tube thickness, are examined. The welding pressures are examined through 3D simulation of non steady state and compared with experimental results.

  • PDF

Mg 온간성형을 위한 십자형상 금형의 가열/냉각 채널 설계 (Heating and Cooling Channel Design of Cross-Shaped Die for Warm Forming of Magnesium Alloy Sheet)

  • 최선철;고동선;김헌영;김형종;홍석무;유수열;신용승
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.370-373
    • /
    • 2008
  • It is known that the temperatures of die, punch, holder and punch pad need to be kept different to get better formability in Mg sheet forming processes. Heating and cooling channels are usually equipped in each tool to assign different temperature. This study focused on the optimal design of the heating and cooling channels for a cross-shaped deep drawing die set. While the die and blankholder were heated to and kept at $250^{\circ}C$ by using heat cartridges, the punch and punch pad were kept at much lower temperature than that of the die and blankholder by water circulating through cooling channels. All the approaches were done by numerical analyses, aiming to maximize the cup height and to minimize the punch corner radius without any failure.

  • PDF

열간 금형재의 기계적 성질과 주조금형 피로해석모델 (Mechanical Properties of Hot Working Die Steel and Fatigue Analysis Model of Casting Mold)

  • 여은구;황성식;이용신;곽시영;김정태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.405-408
    • /
    • 2003
  • Generally, the life of casting mold is limited by fatigue fracture or dimensional inaccuracy originated from wear in high temperature. Although recent research of metallic materials in high temperature fatigue have been much accomplished, many studies on brittle material as a die steel in high temperature fatigue does not have been reported. Especially, the study on the fatigue behavior over the transformation temperature is not studied sufficiently because of its difficult analysis and experiment. Therefore, reliable results of brittle material in high temperature fatigue behavior are needed. In this paper, stress-strain curves and stress-life curves in die STD61 steel are carefully examined between room temperature and 90$0^{\circ}C$, as the basic experimental data are used to predict from fatigue life of casting mold.

  • PDF

강소성 유한요소법을 이용한 Ti 합금 터빈디스크의 단조공정 해석 (An Analysis of Turbine Disk Forging of Ti-Alloy by the Rigid-Plastic Finite Element Method)

  • 조현중;박종진;김낙수
    • 대한기계학회논문집
    • /
    • 제18권11호
    • /
    • pp.2954-2966
    • /
    • 1994
  • The characteristics and good corrosion resistance at room and elevated temperatures led to increasing application of Ti-alloys such as aircraft, jet engine, turbine wheels. In forging of Ti-alloy at high temperature, die chilling and die speed should be carefully controlled because the flow stress of Ti-alloy is sensitive to temperature, strain and strain-rate. In this study, the forging of turbine disk was numerically simulated by the finite element method for hot-die forging process and isothermal forging process, respectively. The effects of the temperature changes, the die speed and the friction factor were examined. Also, local variation of process parameters, such as temperature, strain and strain-rate were traced during the simulation. It was shown that the isothermal forging with low friction condition produced defect-free disk under low forging load. Consequently, the simulational information will help industrial workers develope the forging of Ti-alloys including 'preform design' and 'processing condition design'. It is also expected that the simulation method can be used in CAE of near net-shape forging.

AZ31 마그네슘합금의 온간디프드로잉시 판재성형특성 (Formability of AZ31 magnesium sheet alloy of warm deep drawing)

  • 이명섭;강대민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.377-380
    • /
    • 2005
  • In this study, the experiments of warm deep drawing were done with heated die, and with heated die and cooled punch in order to investigate the formability of ZA31 magnesium sheet alloy of warm deep drawing. For this, warm deep drawing experiments were executed under various temperature, punch velocity and blankholder force. The results of warm deep drawing with heated die showed that fracture occurred punch part at punch velocity of 75mm/min and punch stroke of 10mm under temperature of $100^{\circ}C\~250^{\circ}C$, but did not occure under temperature of $275^{\circ}C\~400^{\circ}C$. And fracture at punch stroke of 25mm did not occurre at punch part under punch velocity of 30mm/min and $250^{\circ}C$, but occured under punch velocity of 75 and 125 mm/min. Also the results of warm deep drawing with heated die and cooled punch showed that the temperature happening maximum height under punch velocity of 10-100mm/min was $225-250^{\circ}C$. And necking occurred at punch shoulder under $20\~150^{\circ}C$, but at die wall under $200\~300^{\circ}C$.

  • PDF

다이캐스팅법에 의해 제조된 SiC 입자강화 알루미늄합금기 복합재료의 미세조직 및 인장특성 (Microstructure and Tensile Properties of $SiC_p$-reinforced Aluminum Alloy Composites Fabricated by Die Casting Method)

  • 이태원;이지환
    • 한국주조공학회지
    • /
    • 제17권4호
    • /
    • pp.385-392
    • /
    • 1997
  • The main objective of this study is to investigate the microstructure and tensile strength of $SiC_p$/Al alloy composites fabricated by die casting method. Die casting was performed using the preheated mold at the pouring temperature range of $620{\sim}750^{\circ}C$ under the pressure of $1,039 kgf/cm^2$. The low speed and a following high injection speed were 0.4 and 2.1 m/s, respectively. The microstructure of $SiC_p$/Al alloy composites fabricated by die casting method was found to be finer than that of composites fabricated by gravity casting. Also, SiC particulates were homogeneously distributed in refined Al matrix due to rapid solidification. The tensile strength of $SiC_p$/Al alloy composites fabricated by die casting method was found to be varied with cast temperature. The maximun tensile strength of $SiC_p$(10 vol.% and 20 vol.%)/Al alloy composites showed 380 MPa at the cast temperature of $750^{\circ}C$ and 363 MPa at the cast temperature of $700^{\circ}C$, respectively.

  • PDF

열간 형단조에 의한 아이들러 개발에 대한 연구 (A Study on the Development of Idler by Hot Closed-die Forging)

  • 정호승;조종래;박희천
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.199-203
    • /
    • 2003
  • Idler of excavator are large product with diameter 500 - 600 mm and parts of a power transmit device. The object of the paper is developed large products by hot closed-die forging. The forging process which is proposed from numerical analysis and various tests is developed a large products with good quality. To estimate the design process parameters such as working load, temperature and flash thickness so on, numerical analysis are used by DEFORM 2D. To obtain a flow stress data and optimal forging temperature is carried out hot compression and tensile test at a various temperature range. Developed product is tested mechanical properties of elongation, hardness and tensile strength so on. Test results are presented excellent mechanical properties.

  • PDF

평금형을 통한 3차원 압출의 정상상태 유한요소해석 (Steady-state finite element analysis of three-dimensional extrusion of sections through square die)

  • 이승훈;이춘만
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.231-234
    • /
    • 1998
  • This study presents steady-state finite element analysis of three-dimensional hot extrusion of sections through square dies. The objective of this study is to develop a steady-state finite element method for hot extrusion through square dies, and to provide theoretical basis for the optimal die design and process control in the extrusion technology. In the present work, steady-state assumption is applied to both analyses of deformation and temperature. The analysis of temperature distribution includes heat transfer. Convection like element is adopted for the heat transfer analysis between billet and container, and also billet and die. Distributions of temperature, effective strain rate, velocity and mean stress are discussed to design extrusion die effectively.

  • PDF

금속복합재료의 열간압출에 관한 금형설계의 최적화기법(I) (Optimization Techniques of Die Disign on Hot Extrusion Process of Metal Matrix Composites)

  • 강충길;김남환;김병민
    • 소성∙가공
    • /
    • 제6권4호
    • /
    • pp.346-356
    • /
    • 1997
  • The fiber orientation distribution and interface bonding in hot extrusion process have an effect on the maechanical properties of metal matrix composites(MMC's). Aluminium alloy matrix composites reinforced with alumina short fibers are fabricated by compocasting method. MMC's billets are extruded at high temperature through conical and curved shaped dies with various extrusion ratios and temperature. This present study was directed to describe the systematic correlation between extrusion die shape and subsequent results such as fiber breakage, fiber orientation and tensile strength to hot extruded MMC's billet. Extrusion load, tensile strength and hardness for variation of extrusion ratios and temperature are investigated to examine mechanical properties of extruded MMC's SEM fractographs of tensile specimens are observed to analyze the fracture mechanism.

  • PDF

후판 압연 시 공정변수 및 선단부의 온도저하가 두께편차에 미치는 영향 (The Effect on the Thickness Variation According to Rolling Condition and Temperature Drop At Top-end in Plate Rolling)

  • 임홍섭;주병돈;이혜경;서재형;문영훈
    • 열처리공학회지
    • /
    • 제22권1호
    • /
    • pp.16-22
    • /
    • 2009
  • The rolling process is an efficient and economical approach for the manufacturing of plate metals. In the rolling process, the temperature variation is very critical for plate thickness accuracy. The main cause of thickness variation in hot plate mills is the non-uniform temperature distribution along the length of the slab. Also the exit plate thickness is mainly affected by the rolling conditions such as mill modulus, plate thickness and plate width. Hence the thickness variation in top-end is also dependent on these factors. Therefore this study has concentrated on determining the correct amounts of thickness variation due to top-end temperature drop and process parameters.