• Title/Summary/Keyword: die manufacturing

Search Result 989, Processing Time 0.02 seconds

Research on the Mold Design of Motor Housing using Die Casting Process (다이캐스팅에 의한 모터 하우징의 금형설계에 관한 연구)

  • Han, Kyu-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.36-41
    • /
    • 2015
  • In this paper, research on the mold design of motor housing produced by the HPDC process was conducted using computer simulations and experiments. Recently, automobile parts have been required to be light and have high strength. The die casting process was used to manufacture automotive motor housings. In the die casting process, the control of casting defects is very important. However, it has usually depended on the experience of the foundry engineer. For the analysis of the manufacturing process of motor housing, the finite element method is applied. Through the simulations using commercial software, the filling pattern and product defects could be confirmed. The analysis results obtained from the filling behavior of the casting process agreed with the experimental results. The computer simulation results of filling behavior were reflected in the optimal mold design of motor housing.

Acoustic Emission Monitoring Fine Wire Drawing Process (와이어 인발가공에 있어서 음향방출 발생 특성)

  • 이완규
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.1
    • /
    • pp.43-50
    • /
    • 1996
  • From a manufacturing standpoint it would be desirable to monitor the degradation of drawing die, that is essential for the maintenance of die quality, the evaluation of product integrity and the reducing scrap. Acoustic emission is powerful method in monitoring fine wire drawing process, especially in detecting the die fracture at early stage. Experiments also suggested that acoustic emission sigals contained valuable information regarding the stage of a drawing process such as the surface appearance of products and the condition of lubrication. These informations are AE monitoring techniques a possible tool in monitoring the drawing process operation. In order to approach this, this paper discusses the nature of acoustic emission signal presented which illustrate the effects of wire and die material, lubricants, and drawing speed on the generation and the mean voltage level of acoustic emission signal. From these experimental, results, we understanded controlling factors of acoustic emission generation.

  • PDF

Strength Analysis of Aluminum Alloy Window Wiper Manufactured by Die Casting (다이캐스팅용 알루미늄 합금으로 제작된 윈도우 와이퍼의 강도 해석)

  • Cho, Seunghyun;Lee, Jeungho;Kim, Hangoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.204-210
    • /
    • 2016
  • This study analyzed the amount of displacement of window wipers according to pressure by using finite element analysis (FEA) with KS standards for aluminum alloy window wipers manufactured by die-casting method. The product design was changed over four steps considering the die-casting process to achieve strength greater than that of the conventional steel window wiper. According to the FEA results, the strength of final aluminum alloy window wiper improved by 55% over that of a steel window wiper, and the weight of the former was less by approximately 45%. Therefore, there is the possibility of module downsizing for driving motor capacity. Further, the cost competitiveness improved, and the manufacturing process of aluminum alloy window wipers was simplified.

Manufacture of Press Die Pattern Using Laser System (레이저 가공 시스템을 이용한 프레스 금형용 패턴 제작)

  • 최명수;강경호;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.816-819
    • /
    • 2000
  • Recently the styrofoam has been used fur material of press die pattern. The object of this research is to develope an automated laser system for manufacture of press die pattern which depends chiefly on handwork during its process. After converting 3-D CAD model into cross-sectional shape information, the unnecessary part of the section is vapored away by laser. The depth and width of cut are mainly under the control of laser power and beam feed rate. The optimum manufacturing conditions are obtained by preliminary experiments. It is necessary fur precise styrofoam pattern manufacturing to develope laser system which has sufficient motion accuracy and program or beam path generation and automatic control of this system.

  • PDF

A Study on the Enhancement of Flatness for the Shield Slot Plate with Curvature (곡률을 가진 쉴드슬롯판의 편평도 향상 연구)

  • Woo, Dong-Uk;Lee, Sang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.23-28
    • /
    • 2006
  • The focus of this study is placed on the enhancement of flatness for the shielded slot plate, one of main components of the MCFC stack. The shielded slot plate is to get curvature during manufacturing process since it is produced by forming operation from only one side of it. Therefore, a correction die is proposed to place just after the main die to apply unbending on the curved plate to get almost flat product. In the design for the correction die, four kinds of design factors are selected to study which factor is the most influencing one affecting the flatness of the plate. From the experimental results using Taguchi method, it has been revealed that the Young's modulus of urethane die is the most critical factor.

  • PDF

A Study on the Machining of Die Profile Using the CAM System (상용 CAM시스템을 활용한 금형 형상부(CORE/CAVITY)의 가공에 관한 연구)

  • Han, Kyu-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.69-74
    • /
    • 2003
  • The purpose of the present paper is to investigate about the machining of profile (core/cavity) of mold die using the commercial CAM system. Recently the requirement of the light weight and high performance of automobiles has Increased. The weight of the automobile is very important in the viewpoint of the fuel and traveling performance. The optimal design technique, material technique, the process design for parts and specially, die machining technique need to be developed for increasing productivity and reducing production time of the automobile parts. In this study, the effect of machining condition on precision of die profile is investigated by experimental observation and analysis. The results will be reflected for development of the precision die of the automobile.

  • PDF

A Study on the Development of Progressive Die and Forming Process for Asymmetric Automotive Door Striker (자동차용 비대칭 스트라이커의 순차이송금형 및 공정 개발에 관한 연구)

  • Youn, Jae-Woong;Kim, Hong-Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.167-174
    • /
    • 2012
  • For high production rate of parts requiring multiple operations such as punching, blanking, or other operations are generally done with progressive dies. However, progressive die is generally limited to use for sheet metal forming due to the technical difficulties in rod or bulk material. This study proposes a new technique of progressive die and forming process for asymmetric automotive door striker, which is conventionally manufactured with separate tandem processes using solid rod. In order to design forming process and die, FEM simulation was performed to divide proper intermediate processes and analyze its formability. As a result, Forming processes were divided into 3 stages with upper and side punches and also, workpiece feeding and location mechanism was designed and manufactured in this study. Finally, forming tryouts were carried out by using the manufactured progressive die to verify the forming quality and productivity.

A Study on the Multi-row Progressive Die for Thin Sheet Metal Forming by Computer Simulation

  • Sim, Sung-Bo;Kim, Chung-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.75-80
    • /
    • 2008
  • The progressive die performs a work of sheet metal processes with a piercing, notching, embossing, bending, drawing, cut-off etc. in many kinds of pressing. Now a days, these processes have been evaluated as a advanced tooling method to increase the productivity and high quality assurance. The first step analyzing of die design is production part review, then the arrangement drawing of product design and strip process layout design should be done as a next steps with a FEM simulation for its problem solution. After upper procedure were peformed, it was started to make the die, then tryout and its revision of the die and product quality, safety, productivity etc. were done continually. For the all of these process, we mobilized the theory and practice of sheet metal forming, die structure, the function and activity of die components, and the others of die machining, die material, heat treatment and know‐how so on. In this study the features of representative are production part analyzing through the FEM simulation of bending area with a considering spring back problem by DEFORM.

  • PDF

A Study on the Cold Forging Development of Guide Valve for the Fuel Pressure Regulator (연료 압력 조절기용 가이드 밸브의 냉간 단조 개발에 관한 연구)

  • Song, Seung-Eun;Kwon, Hyuk-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.331-336
    • /
    • 2012
  • This study was aimed at the design of the dies for the guide valve for the fuel pressure regulator using the computer simulation to shorten the period of production, on the basis of the process planning which was designed by the field experts. In the computer simulation, 'Deform-3d' and 'Eesy-DieOpt' have been used, which are the commercial process analysis and die design program. Through the process analysis, we could know the propriety of the forming process, the inner pressure of the die and the suitable fitting pressure between the insert and the sleeve which was not showing any positive tangential stresses in the insert. Through the simulation of die design, we could know the number of the stress ring, the diameter ratios, the stresses of the die, the shrink fitting tolerance and temperature in the condition of the already determined maximum outer die diameter of the multi-stage former. The validity of the die design using the computer simulation was analyzed by the experiments and the results were satisfactory. As the results of this study, the new and easy die design system for multi-forging has been developed.

A Split Die Design for Forging of Hexagonal Bolt Head (육각볼트 헤드 단조를 위한 분할금형설계)

  • Qiu, Yuangen;Cho, Hae Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.91-97
    • /
    • 2020
  • A split-die design for the cold forging of symmetric parts such as those having a hexagonal cross-section is presented in this paper. Parts with a hexagonal cross-section, such as bolt heads and nuts, should be forged with a die that has a hexagonal-shaped hole. A split type die is required to mitigate the buildup of stress concentrations located at the corners of the hexagonal hole. Generally, the insert of a hexagonal die is made by cutting each corner of a cylinder using a hexagonal hole and then combined with the die and shrink-fitted. However, split dies face problems when extruding material at the corners of the hexagonal split die. To address this problem, two types of split dies were evaluated: rounded hexagonal dies and angular hexagonal dies. The effects of the pre-stress ring on the dies were compared and analyzed and results show that using the angular split hexagonal die can extend the lifetime of forging dies.