• Title/Summary/Keyword: die blank shapes

Search Result 25, Processing Time 0.016 seconds

Initial Blank Optimization Design of Square Can Multistage Drawing considering Formability and Product Shape (사각형 캔 드로잉 다단 공정에서 성형성과 제품형상을 동시에 고려한 초기 블랭크 형상 최적 설계)

  • Park, Sang-Min;Kim, Dong Kyu;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.320-326
    • /
    • 2017
  • Multistage deep-drawing technology is used widely in the production of mobile phone battery cases to improve productivity and economy. To ensure adequate capacity and rigidity, such cases are fabricated as a rectangular cup with a high slender ratio. The multistage deep-drawing of a rectangular cup entails a high slender ratio, and the heights of the product sides may be non-uniform because of the complicated deformation mechanisms. This causes problems in product assembly that affects the surface quality of the case. This study examined a blank shape that minimizes the height variations of the product to resolve the aforementioned problems. Optimization design and analysis were performed to identify the shape that yields the least variation. The long and short sides of an oval blank were set as the design variables. The objective function was set to yield the lowest height difference, and the thickness reduction rate of the product was set to the target range. In addition, the height of the final shape was set as a constraint. The height difference was minimized successfully using the optimized design. The design process of the initial blank for all rectangular shapes can be automated in the future.

Study on Hot Stamping of the Rotating Module Upper Plate for an Autonomous Vehicle Seat (자율주행 자동차용 전동회전시트 상부회전판의 핫스탬핑 성형에 관한 연구)

  • Yook, Hyung-sub;Pyun, Jong-Kweon;Suh, Chang-Hee;Oh, Sang-Gyun;Kwon, Tae-Ha;Kim, Byung-Ki;Park, Dong-Kyou
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.44-49
    • /
    • 2021
  • Seats in autonomous vehicles must be able to rotate to fully utilize the interior space. Generally, ultra-high strength steel is used for the rotation module because it should have high strength and high rigidity. In addition, the rotating parts are difficult to form because they have complex shapes. In this study, the upper plate of the rotating module, whose complex shape makes it difficult to form, was formed by applying the hot stamping method. The drawing method and the form-drawing method, which are generally used to form components of complex shapes, were compared. We showed that the form-drawing method increased the degree of freedom of the material flow to improve the formability, thus enabling the forming of the plate. In addition, the die and blank shapes were found to be important factors in determining the success of the hot stamping. The validity of the analysis results was confirmed through forming analysis and experiments.

Deformation behaviour of steel/SRPP fibre metal laminate characterised by evolution of surface strains

  • Nam, J.;Cantwell, Wesley;Das, Raj;Lowe, Adrian;Kalyanasundaram, Shankar
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.1
    • /
    • pp.61-75
    • /
    • 2016
  • Climate changes brought on by human interventions have proved to be more devastating than predicted during the recent decades. Recognition of seriousness of the situation has led regulatory organisations to impose strict targets on allowable carbon dioxide emissions from automotive vehicles. As a possible solution, it has been proposed that Fibre Metal Laminate (FML) system is used to reduce the weight of future vehicles. To facilitate this investigation, FML based on steel and self-reinforced polypropylene was stamp formed into dome shapes under different blank holder forces (BHFs) at room temperature and its forming behaviour analysed. An open-die configuration was used in a hydraulic press so that a 3D photogrammetric measurement system (ARAMIS) could capture real-time surface strains. This paper presents findings on strain evolutions at different points along and at $45^{\circ}$ to fibre directions of circular FML blank, through various stages of forming. It was found initiation and rate of deformation varied with distance from the pole, that the mode of deformations range from biaxial stretching at the pole to drawing towards flange region, at decreasing magnitudes away from the pole in general. More uniform strain distribution was observed for the FML compared to that of plain steel and the most significant effects of BHF were its influence on forming depth and level of strain reached before failure.

An Expert System for the Process Planning of the Elliptical Deep Drawing Transfer Die(II) (타원형 디프 드로잉 트랜스퍼 금형의 공정설계 전문가 시스템(II))

  • 배원락;박동환;박상봉;강성수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.1
    • /
    • pp.9-17
    • /
    • 2002
  • The study is insufficient on process planning of the elliptical deep drawing product. Thus, in this present study, the expert system for elliptical deep drawing products was constructed by using process sequence design. The expert system was developed to be based on the general concept of each entity. The system was developed in this work consists of sixth modules. The first one is a shape recognition module to recognize non-axisymmetric products and to generate Entity_list. The second one is three dimensional (3-D) modeling module to calculate the surface area for non-axisymmetric products. The third one is a blank design module to create suggested blanks of three shapes with the identical surface area. The fourth one is shape design module based on the production rules that play the most important role in an expert system for manufacturing. The production rules are generated and upgraded by inter- viewing field engineers, plastic theory and experiments. The fifth and sixth ones are a graphic module to visualize results of the expert system and a post module to rise user's convenience, respectively. According to constructed the expert system for process sequence design, it was possible to reduce the lead time.

Evaluation of Formability Dependent on Reconfigurable Roller Types for 3D Curved Sheet Forming (3차원 곡판 성형을 위한 비정형롤러의 형태에 따른 성형성 평가)

  • Son, S.E.;Yoon, J.S.;Kim, H.H.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.25 no.1
    • /
    • pp.12-20
    • /
    • 2016
  • Press machines and dies are commonly used for 3D curved sheet forming. Using conventional die forming can cause economic problems since various modifications of the die shape are required depending on the product shape. Various types of flexible forming such as multi-point dieless forming (MDF), flexible incremental roll forming have been developed to improve the needed process flexibility. Although MDF can reduce the production cost using reconfigurable dies, it still has significant material loss. Drawbacks such as wrinkling, dimpling, and forming errors can also occur despite continuous investigations to mitigate these defects. A novel sheet forming process for 3D curved surfaces, a flexibly-reconfigurable roll forming (FRRF), has been recently proposed to overcome the economic and technical limitations of current practice. FRRF has no limitation on blank size in the longitudinal direction, and also minimizes or eliminates forming defects such as wrinkling and dimpling. Feasibility studies of FRRF have been conducted using FE simulations for multi-curved shapes and various sheet thicknesses. Therefore, the fabrication of a FRRF apparatus is required for any follow-up studies. In the current study, experiments with reconfigurable rollers were conducted using a simple design pre-FRRF apparatus prior to fabricating the full size FRRF apparatus. There are three candidates for the reconfigurable roller: a bar-type shaft, a flexible shaft, a ground flexible shaft. Among these candidates, the suitable reconfigurable roller for FRRF is determined through various forming tests.