• Title/Summary/Keyword: dichloroethylene

Search Result 44, Processing Time 0.016 seconds

Aerobic Degradation of Tetrachloroethylene(PCE) by Pseudomonas stutzeri OX1

  • Ryoo, Doohyun;Shim, Hojae;Barbieri, Paola;Wood, Thomas K.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.207-208
    • /
    • 2000
  • Since trichloroethylene (TCE), dichloroethylene (DCE), and vinyl chloride (VC) arise from anaerobic degradation of tetrachloroethylene (PCE) and TCE, there is interest in creating aerobic remediation systems that avoid the highly toxic VC and cis-DCE which predonominate in anaerobic degradation. However, it seemed TCE could not be degraded aerobically without an inducing compound (which also competitively inhibits TCE degradation). It has been shown that TCE induces expression of both the toluene dioxygenase of p. putida F1 as well as toluene-p-monooxygenase of P.mendocina KRI. We investigated here the ability of PCE, TCE, and chlorinated phenols to induce toluene-o-xylene monooxygenase (ToMO) from P.stutzeri OX1. ToMO has a relaxed regio-specificity since it hydroxylates toluene in the ortho, meta, and para positions; it also has a broad substrate range as it oxidizes o-xylene, m-xylene, p-xylene, toluene, benzene, ethylbenzene, styrene, and naphthalene; chlorinated compounds including TCE, 1, 1-DCE, cis-DCE, trans-DCE, VC, and chloroform : as well as mixtures of chlorinated aliphatics (Pseudomonas 1999 Maui Meeting). ToMO is a multicomponent enzyme with greatest similarity to the aromatic monooxygenases of Burkholderia pickettii PKO1 and P.mendocina KR1. Using P.sturzeri OX1, it was found that PCE induces P.mendocina KR1 Using P.situtzeri OX1, it was found that PCE induces ToMO activity measured as naphthalene oxygenase activity 2.5-fold, TCE induces 2.3-fold, and toluene induces 3.0 fold. With the mutant P.stutzeri M1 which does not express ToMO, it was also found there was no naphthalene oxygenate activity induced by PCE and TCE; hence, PCE and TCE induce the tow path. Using P.putida PaW340(pPP4062, pFP3028) which has the tow promoter fused to the reporter catechol-2, 3-dioxygenase and the regulator gene touR, it was determined that the tow promoter was induced 5.7-, 7.1-, and 5.2-fold for 2-, 3-, 4-chlorophenol, respectively (cf. 8.9-fold induction with o-cresol) : however, TCE and PCE did not directly induce the tou path. Gas chromatography and chloride ion analysis also showed that TCE induced ToMO expression in P.stutzeri OX1 and was degraded and mineralized. This is the first report of significant PCE induction of any enzyme as well as the first report of chlorinated compound induction of the tou operon. The results indicate TCE and chlorinated phenols can be degraded by P.stutzeri OX1 without a separate inducer of the tou pathway and without competitive inhibition.

  • PDF

Sampling Survey of Hazardous Water Pollutants in Industrial Wastewater Treatment Plants (산업단지 폐수종말처리장의 특정수질유해물질 유입 및 방류 현황조사)

  • Park, Soo-Hyung;Jung, Jin-Young;Kim, Jaehoon;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.10
    • /
    • pp.590-595
    • /
    • 2015
  • Sampling campaigns were conducted for hazardous chemicals and heavy metals in influents and effluents of industrial wastewater treatment plants (WWTPs) in Korea for best management practices (BMPs) of those pollutants through the plants and the receiving water bodies. Twenty seven WWTPs, receiving wastewater from industrial complexes and treating more than $2,000m^3/day$, were selected for the sampling campaign. Influents and effluents of each WWTPs were sampled once a month (total three times per plant) between July and September, 2012, and analyzed for 22 hazardous water pollutants among 28 regulated for effluents limits in Korea. Concentrations of mercury, arsenic, 1,1-dichloroethylene, and benzene in the influents were relatively higher; concentrations of mercury and arsenic in effluents were relatively higher than those of other pollutants. Most of the hazardous chemicals and heavy metals were removed (including phase transfer) more than 60% through the treatment processes except for selenium (30% removal) and 1,4-dioxane (18% removal).

Degradation of Tetrachloroethylene (PCE) by a Dechlorinating Enrichment Culture Fixed in an Anaerobic Reactor (탈염소화 미생물 부착 혐기성 고정막 반응기에 의한 테트라클로로에틸렌(PCE)의 분해)

  • Lee Tae Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.49-55
    • /
    • 2004
  • A soil enrichment LYF-1 culture from a contaminated site, which could reductively dechlorinate 900 $\mu$M (ca. 150 mg/L) of tetrachloroethylene (PCE) stoichimetrically into cis-1,2-dichloroethylene (cis-DCE), was established and characterized. The enrichment culture can use yeast extract, peptone, formate, acetate, lactate, pyruvate, citrate, succinate, glucose, sucrose, and ethanol as electron donors for dechlorination of PCE. Addition of NO$_2$$^{[-10]}$ and NO$_3$$^{[-10]}$ as alternative electron acceptors showed complete inhibition of PCE dechlorination, but S$_2$O$_3$$^{-2}$ , SO$_3$$^{-2}$ and SO$_4$$^{-2}$ had no significant effect on PCE dechlorination. The enrichment culture was attached to ceramic media in an anaerobic fixed-bed reactor. The fixed-bed reactor showed more than 99% of PCE degradation in the range of PCE loading rate of 0.13-0.78 $\mu$moles/L/hr. The major end product of PCE dechlorination was cis-DCE.

Monitoring Anaerobic Reductive Dechlorination of TCE by Biofilm-Type Culture in Continuous-Flow System (연속흐름반응조에서 바이오필름형태의 탈염소화 미생물에 의한 TCE분해 모니터링)

  • Park, Sunhwa;Han, Kyungjin;Hong, Uijeon;Ahn, Hongil;Kim, Namhee;Kim, Hyunkoo;Kim, Taeseung;Kim, Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.5
    • /
    • pp.49-55
    • /
    • 2012
  • A 1.28 L-batch reactor and continuous-flow stirred tank reactor (CFSTR) fed with formate and trichloroethene (TCE) were operated for 120 days and 56 days, respectively, to study the effect of formate as electron donor on anaerobic reductive dechlorination (ARD) of TCE to cis-1,2-dichloroethylene (c-DCE), vinyl chloride (VC), and ethylene (ETH). In batch reactor, injected 60 ${\mu}mol$ TCE was completely degraded in the presence of 20% hydrogen gas ($H_2$) in less than 8 days by anaerobic dechlorination mixed-culture (300 mg-soluble protein), Evanite Culture with ability to completely degrade tetrachloroethene (PCE) and -TCE to ETH under anaerobic conditions. Once the formate was used as electron donor instead of hydrogen gas in batch or chemostat system, the TCE-dechlorination rate decreased and acetate production rate increased. It indicates that the concentration of hydrogen produced in both systems is possibly more close to threshold for homoacetogenesis process. Soluble protein concentration of Evanite culture during the batch test increased from 300 mg to 688 mg for 120 days. Through the protein monitoring, we confirmed an increase of microbial population during the reactor operation. In CFSTR test, TCE was fed continuously at 9.9 ppm (75.38 ${\mu}mol/L$) and the influent formate feed concentration increased stepwise from 1.3 mmol/L to 14.3 mmol/L. Injected TCE was accumulated at 18 days of HRT, but TCE was completely degraded at 36 days of HRT without accumulation of the injected-TCE during the left of experiment period, getting $H_2$ from fermentative hydrogen production of injected formate. Although c-DCE was also accumulated for 23 days after beginning of CFSTR operation, it reached steady-state in the presence of excessive formate. We also evaluated microbial dynamic of the culture at different chemical state in the reactor by DGGE (denaturing gradient gel electrophoresis).