• Title/Summary/Keyword: dicarboximide fungicides

Search Result 17, Processing Time 0.022 seconds

Fungicide Resistance and Genetic Diversity of Botrytis cinerea of Citrus (감귤 잿빛곰팡이병균의 살균제에 대한 저항성 및 유전적 다양성)

  • 고영진;이재군;서정규;문두길;한해룡
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.682-688
    • /
    • 1998
  • Fungicide resistance of 48 isolates of Botrytis cinerea collected from citrus in Cheju was investigated and genetic diversity was analyzed with random amplified polymorphic DNA(RAPD). High levels of resistance to benzimidazole fungicides benomyl and thiophanate-methyl and N-phenylcarbamate fungicide diethofencarb were observed. Negative cross resistance was clear between benzimidazole and N-phenylcarbamate fungicides, and multiple resistance to the fungicides was also observed. There was cross resistance among the dicarboximide fungicides procymidione, vinclozolin and iprodione as it was observed between the benzimidazole fungicides benomyl and thiophanate-methyl. The lowest levels of resistance were to the dicarboximide fungicides, but no sensitive isolate to polyoxin B was observed. The isolates showed genetically diverse RAPD profiles according to the geographic origin collected, but there was no significant correaltion between RAPD profiles of genomic DNA and the levels of fungicide resistance of the isolates. The isolates showed genetically diverse RAPD profiles, indicating that genetic differentiation had already occurred in the populations of B. cinerea distributed in Cheju.

  • PDF

Occurrence of Botrytis cinerea Resistant to Dicarboximide Fungicides on Strawberries in Greenhouses (시설재배(施設栽培) 딸기 포장(圃場)에서 Dicarboximide 계(系) 약제저항성(藥劑抵抗性) 잿빛곰팡이병균(病菌)의 발생(發生))

  • Yu, Seung Hun;Park, Jeong Hun
    • Korean Journal of Agricultural Science
    • /
    • v.19 no.2
    • /
    • pp.170-178
    • /
    • 1992
  • Isolates of Botrytis cinerea resistant to dicarboximide fungicides were collected from strawberry fields in greenhouses in spring and early summer of 1990. Five out of 9 isolates of B. cinera were resistant, which showed mycerial growth on PDA containing dicarboximide fungicides(procymidone and vinclozolin) with concentrations of 100, 400 and $1,600{\mu}g/ml$. The minimal inhibitory concentration(MIC) values of the dicaboximide-resistant isolates was more than $6,400{\mu}g/ml$, while that of the sensitive isolates was less than $6.25{\mu}g/ml$. The germination ratio of conidia of the resistant isolates on PDA containing procymidone and vincolozolin was more than 95%, while that of the sensitive was less than 15%. The procymidone-resistant isolates were also resistant to vinclozolin, showing cross-resistant between the fungicides, but cross-resistant was not observed between the dicarboximides and dichlofluanid. Resistance to benomyl was also found in all the dicarboximide resistant isolates. Occurrence frequency of dicarboximide-resistant isolates out of 223 isolates was about 40%. The resistant isolates were widely distributed throughout Korea.

  • PDF

Incidence of Benzimidazole- and Dicarboximide Resistant Isolates of Monilinia fructicola from Overwintering Mummies and Peduncles on Peach trees (월동 복숭아 미이라 과일과 과병으로부터 분리한 Monilinia fructicola의 Benzimidazole과 Dicarboximide계 살균제에 대한 저항성 밀도)

  • 임태헌;장태현;차병진
    • Korean Journal Plant Pathology
    • /
    • v.14 no.4
    • /
    • pp.367-370
    • /
    • 1998
  • Monilina fructicola, the brown rot fungus of stone fruits, was isolated from overwintering mummies and peduncles on peach trees from February to March, 1998. The resistant population of these isolates to benzimidazole (benomyl, carbendazim and thiophanate-methyl) and dicarboximide (iprodione, vinclozolin and procymidone) was examined. Among 417 isolates, the incidence of isolates resistant to benomyl, carbendazim, and thiophanate-methyl were 45 (10.8%), 47 (11.3%), and 46 (11.0%), respectively. Forty two (10.0%) isolates showed cross-resistance to benzimidazole fungicides. On the other hand, the resistant isolates against iprodione, vinclozolin and procymidone were 186 (44.6%), 1 (0.2%) and 150 (36.0%), respectively. Among the isolates, 116 (27.8%) showed cross-resistance to iprodione and procymidone. Moreover, 27 (6.5%) of 417 isolates showed double-resistance to both benzimidazole (benomyl) and dicarboximide (iprodione).

  • PDF

Changes in Sensitivity Levels of Botrytis cinerea Populations to Benzimidazole, Dicarboximide, and N-Phenylcarbamate Fungicides (잿빛곰팡이병균(Botrytis cinerea)의 Benzimidazole계, Dicarboximide계 및 N-phenylcarbamate계 살균제에 대한 감수성 변화)

  • 김병섭;박은우;조광연
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.693-699
    • /
    • 1998
  • Three three hundred and ninety seven isolates of Botrytis cinerea were isolated from infected plants of strawberry, tomato and cucumber from several areas in Korea during 1994∼1996 and the resistance of these isolates against some fungicides were examined. The isolation frequency of phenotypes resistant to carbendazim, procymidone, and diethofencarb were found to be 69.9 43.7, and 31.8%, respectively. The isolates were divided into six phenotypic groups; SSR, SRR, RSS, RRS, RSR and RRR, representing sensitive (S) or resistant (R) to benzimidazole, dicarboximide, and N-phenylcarbamate fungicides in order. The percentage of six phenotypes were 28.2, 2.0, 27.2, 41.0, 0.9 and 0.8%, respectively. On the basis of the mycelial growth inhibition (%) B. cinerea isolates were divided into three classes (class 1; 0∼50%, class 2; 51-99%, class 3; 100% inhibition) on carbendazim and three classes (class 1; 0∼75%, class 2; 76∼99%, class 3; 100% inhibition) on procymidone and the mixture of carbendazim+diethofencarb, respectively. Changes in sensitivity levles to carbendazim and carbendazim+diethofencarb were affected by introduction and increasing ratio of the use of diethofencarb.

  • PDF

Antifungal activities of sulphamide and dicarboximide fungicides against Botrytis cinerea in several in vitro bioassays (여러 종류의 in vitro 생물검정에서 Botrytis cinerea에 대한 sulphamide계와 dicarboximide계 살균제의 활성 특성)

  • Choi, Gyung-Ja;Kim, Heung-Tae;Kim, Jin-Cheol;Cho, Kwang-Yun
    • The Korean Journal of Pesticide Science
    • /
    • v.3 no.3
    • /
    • pp.37-44
    • /
    • 1999
  • Two sulphamide (dichlofluanid and tolylfluanid) and three dicarboximide fungicides (iprodione, vinclozolin, procymidone) were used to investigate the correlation between in vitro antifungal activities and in vivo disease controlling activities against Botrytis cinerea, a causal agent of tomato gray mold and to develop efficient in vitro assays. They controlled effectively the development of tomato gray mold disease in vivo and their controlling activities were similar one another. However, several in vitro assays revealed that their in vitro antifungal activities were quite different between sulphamide and dicarboximide fungicides; the formers showed stronger inhibition activities for spore germination than the latters, whereas the formers inhibited mycelial growth less severely than the latters. The results indicate that the fungicides having different modes of action can show different in vitro antifungal activities according to in vitro assays, even if they have similar in vivo disease controlling activities. On the other hand, two rapid and efficient in vitro assays named Microtiter plate methods I (MPM I) and II (MPM II) were developed for the evaluation of fungicides for inhibitory activities against spore germination and mycelial growth of B. cinerea, respectively. The antifungal activities of five fungicides of two chemical groups in MPM I and II were correlated with the inhibitory activities against spore germination and mycelial growth using solid media, respectively.

  • PDF

Fitness of Dicarboximide-Resistant and Sensitive Monilinia fructicola Isolated from Peach in Korea

  • Lim, Tae-Heon;Yi, Jae-Choon;Chang, Tae-Hyun;Byeongjin Cha
    • The Plant Pathology Journal
    • /
    • v.17 no.4
    • /
    • pp.205-209
    • /
    • 2001
  • Dicarboximide-resistant isolates of Monilinia fructicola grew readily on media amended with dicarbosimide fungicides, and showed cross-resistance to pentachlo-ronitrobenzene (PCNB). The fitness of resistant isolates was inferior to that of sensitive isolates. Mycelial growth on fungicide-free medium was not significantly different between the dicarboximide-resistant and sensitive isolates. The originally high $\textrm{EC}_{50}$ values of the resistant isolate decreased after storage for 16 weeks at $4^{\circ}$. After inoculation with the mixture of spore suspensions of resistant and sensitive isolates, the re-isolation rate of the resistant spores was significantly reduced regardless of the mixing ratio. From the results, it could be concluded that the competitive ability of the resistant isolates is inferior to the sensitive ones.

  • PDF

Distribution of Monilinia fructicola Isolates Resistant to Dicarboximide or to both Procymidone and Carbendazim in Korea

  • Cha, Byeong-Jin;Lim, Tae-Heon
    • The Plant Pathology Journal
    • /
    • v.19 no.1
    • /
    • pp.46-50
    • /
    • 2003
  • To evaluate the sensitivity of Monilinia fructicola to dicarboximides used in controlling brown rot of peach, the fungus was isolated from commercial peach orchards in Chochiwon (CH), Chongdo (CD), Gyeongsan (GY), and Youngduk (YO) in Korea. The population shift of dicarboximide-resistant isolates of M. fructicola was investigated for 3 years starting 1998. The frequency of procymidone-resistant isolates (PRI) was higher in CD and GY than in CH and YO. The frequency of PRI was higher in the mid season (July-August) than in the rest of the year. Cross-resistance rate of PRI to iprodione was over 87.8% during the investigation, and double-resistance to both procymidone and carbendazim was less than 10%. However, the rate of cross-resistant isolates to vinclozolin was low. In the orchards in GY and CH without any fungicide spray, the PRI population was persistent and did not vary for 3 years. The results suggest that dicarboximide resistance of M. fructicola could be a problem in controlling brown rot and blossom blight on peach trees because it may take a long time to recover the population with sensitive isolates even in the absence of these fungicides.

Characterization of Mutations in AlHK1 Gene from Alternaria longipes: Implication of Limited Function of Two-Component Histidine Kinase on Conferring Dicarboximide Resistance

  • Luo, Yiyong;Yang, Jinkui;Zhu, Mingliang;Yan, Jinping;Mo, Minghe;Zhang, Keqin
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.15-22
    • /
    • 2008
  • Four series (S, M, R, and W) of Alternaria longipes isolates were obtained based on consecutive selection with Dimethachlon (Dim) and ultraviolet irradiation. These isolates were then characterized according to their tolerance to Dim, sensitivity to osmotic stress, and phenotypic properties. All the selected Dim-resistant isolates showed a higher osmosensitivity than the parental strains, and the last generation was more resistant than the first generation in the M, R, and W series. In addition, the changes in the Dim resistance and osmotic sensitivity were not found to be directly correlated, and no distinct morphologic characteristics were found among the resistant and sensitive isolates, with the exception of the resistant isolate K-11. Thus, to investigate the molecular basis of the fungicide resistance, a group III two-component histidine kinase (HK) gene, AlHK1, was cloned from nineteen A. longipes isolates. AlHK1p was found to be comprised of a six 92-amino-acid repeat domain (AARD), HK domain, and response regulator domain, similar to the Os-1p from Neurospora crassa. A comparison of the nucleotide sequences of the AlHK1 gene from the Dim-sensitive and -resistant isolates revealed that all the resistant isolates contained a single-point mutation in the AARD of AlHK1p, with the exception of isolate K-11, where the AlHK1p contained a deletion of 107 amino acids. Moreover, the AlHK1p mutations in the isolates of each respective series involved the same amino acid substitution at the same site, although the resistance levels differed significantly in each series. Therefore, these findings suggested that a mutation in the AARD of AlHK1p was not the sole factor responsible for A. longipes resistance to dicarboximide fungicides.

Effect of Mepanipyrim on the Resistant Isolates of Gray Mold fungus, Botrytis Cinerea to the Fungicides of Benzimidazole and Dicarboximide (Benzimidazole과 dicarboximide계 살균제 저항성 잿빛곰팡이병원균(Botrytis cinerea)에 대한 mepanipyrim의 효과)

  • Koo, Han-Mo;An, Seung-Joon;Shin, Ho-Chul;Do, Eun-Soo;Shin, Mi-Ho;Kim, You-Seok;Kim, Jin-Hee;Chun, Se-Chul
    • Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.259-265
    • /
    • 2006
  • Effect of the fungicide mepanipyrim on the resistant and sensitive isolates of Botrytis cinerea was studied in vitro and also tested to control Botrytis rot of strawberry, cucumber and grape in the field. These isolates were selected by relative mycelial growth and spore germination on potato dextrose agar(PDA) incorporated with $100{\mu}g\;a.i./ml$ of benomyl and procymidone, respectively, compared to the unamended PDA. Mycelial growth of the selected resistant isolates was significantly inhibited by mepanipyrim but the inhibition rate was similar to other fungicides belong to benzimidazole or dicarboximide, although spore germination was not inhibited even by the higher concentration of mepanipyrim. When the benomyl and procymidone resistant isolates were inoculated to cucumber leaves, lesion development was significantly inhibited with application of $250{\mu}g\;a.i./ml$ of mepanipyrim but not with that of benomyl and procymidone. In addition, when $250{\mu}g\;a.i./ml$ of mepanipyrim was applied to strawberry, cucumber, and grape in the field, the control of Botrytis rot was significantly different from that of the untreated control(Duncan's multiple range test, p<0.05). The results suggested that mepanipyrim might be an alternative fungicide for the control of benomyl- and procymidone-resistant pathogens of Botrytis rot.

Occurrence of Multiple Resistant Isolates of Botrytis cinerea to Benzimidazole and N-phenylcarbamate Fungicides (Benzimidazole계 및 N-phenylcarbamate계 살균제에 다중 저항성인 잿빛곰팡이병균의 발생)

  • 김병섭;임태현;박은우;조광연
    • Korean Journal Plant Pathology
    • /
    • v.11 no.2
    • /
    • pp.146-150
    • /
    • 1995
  • 1994년, 1995년에 주요 채소 작물에서 분리한 잿빛곰팡이병균(Botrytis cinerea)의 방제 살균제에 대한 저항성을 조사한 결과, 1994년 분리된 713균주 중 610균주(85.6%)가 benzimidazole계에 저항성(Ben\ulcorner)이었고, 249균주(34.9%)는 dicarboximide계 살균제에 저항성(Pro\ulcorner)이었으며, benzimidazole계 및 N-phenyl carbamate계 두약제 모두에 저항성인 균주는 분리되지 않았다. 1995년에는 현재까지 520균주를 분리하였는데, 그중 Ben\ulcorner이 317균주(61%)이며 Pro\ulcorner은 214균주(41.2%)이었고, Ben\ulcorner이며 NPC\ulcorner인 균주(Ben\ulcorner+NPC\ulcorner)는 15균주(2.9%)로 나타났다. 이러한 저항성 균주의 최소 억제 농도는 carbendazim 1,000 $\mu\textrm{g}$/ml 이상, diethofencarb 1,000 $\mu\textrm{g}$/ml 이상이었다. 또 Ben\ulcorner+NPC\ulcorner인 15균주 중 3균주는 dicarboximide계 살균제인 procymidone에도 저항성이었으며, 한 균주를 제외한 모든 Pro\ulcorner 균주는 Ben\ulcorner로 나타났다.

  • PDF