• Title/Summary/Keyword: diamond turning machine

Search Result 90, Processing Time 0.031 seconds

A study on the cutting characteristics of non-ferrous metals using diam odd turning machine (초정밀가공기를 이용한 비철금속의 절삭특성에 관한 연구)

  • 고준빈;김건희;원종호
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.124-129
    • /
    • 2001
  • The experimental study was the cutting characteristics of non-ferrous metals. The experimental apparatus was used the turning machine and diamond tool. This aimed at lading the optimal cutting conditions by measuring surface farm and roughness. Used non-ferrous metals were aluminum, brass and oxygen-free copper. As well, according to changing cutting conditions such as feed rate by measuring cutting farce and surface roughness and according to cutting conditions the non-ferrous metals studied about cutting properties.

  • PDF

Plating hardness and its effect to the form accuracy in shaping of corner cube on cu-plated steel plate using a single diamond tool (단결정 다이아몬드 공구에 의한 Corner Cube 가공 시, 형상정밀도에 미치는 동 도금층의 경도의 영향)

  • Lee, J.Y.;Kim, C.H.;Sea, C.W.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.64-69
    • /
    • 2014
  • This article presents machining experiments to assess the relationship between the profile accuracy and the workpiece hardness using a natural diamond tool on an ultra-precision diamond turning machine. The study is intended to secure a corner cube prism pattern for reflective film capable of high-quality outcomes. The optical performance levels and edge images of corner cubes having various hardness levels of the copper-coated layer on a carbon steel plate are analyzed. The hardness of the workpiece has a considerable effect on the profile accuracy. The higher the hardness of the workpiece, the better the profile accuracy and the worse the edge wear of the diamond tool.

A Study on Machining of Aspherical Surface using a cone. (원추형상을 이용한 비구면 형상가공에 관한 연구)

  • 이상민;박철우;이종항
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1348-1352
    • /
    • 2004
  • An aspherical lens in information technology has been increased in order to enhance the optical performances. There are two kinds of approaches to machine the aspherica surface is generally conducted by the diamond turning machine, precision grinding machine, and polishing machine. This technique, however, has a problem which needs an expensive and high precision machine in order to increase the surface roughness and the machining accuracy. In this paper, a machine, which is able to machine the aspherical surface, was developed to decrease the cost. Also, the machining of the aspherical surface using a cone was carried out experimentally in order to compare the experiment with the simulation. The results showed that the machining experiments of the aspherical surface by using the titled cone were in accordance with the simulation.

  • PDF

A Study on the On-machine Profile Measurement of Large Aspheric Form using Capasitive Sensor (정전용량센서를 이용한 대구경 비구면 형상의 기상측정에 관한 연구)

  • Kim, Geon-Hee;Won, Jonh-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.56-61
    • /
    • 2003
  • This paper described about on-machine profile measurement of aspheric surfaces using contact probing technique in ultra precision machine. A contact probe has been designed as a sensing device to obtain measuring resolutions in nanometer regime using a circle leaf spring mechanism and a capacitive-type sensor. The contact probe which is installed on the z-axis is In touch with the aspheric objects which is fixed on the spindle of the diamond turning machine(DTM) during the measuring procedure. The x, z-axis motions of the machine are monitored by a set of two orthogonal plane mirror type laser interferometers. As a results, the developed contact probe on-machine measurement system showed 10 nanometers repeatability with a ${\pm}2{\sigma}$ and uncertainty of 200 nmPv.

  • PDF

Construction of 2-3 Dimensional Attractor System for Cutting Characteristics Evaluation of Metals (금속의 절삭성 평가를 위한 2-3차원 어트랙터 시스템의 구축)

  • Yun In Sik;Lee Jong Dae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.8-13
    • /
    • 2005
  • This study proposes the construction of 2-3 dimensional attractor system for cutting characteristics evaluation of metals. Also this paper aims to find the optimal cutting conditions of diamond turning machine by measuring surface form and roughness to perform the cutting experiment of metals, which are aluminum, with diamond tool. As well, according to change cutting conditions such as feed rate, using diamond turning machine to perform cutting processing, by measuring cutting force and surface roughness and according to cutting conditions the aluminum about cutting properties. Trajectory changes in the attractor indicated a substantial difference in attractor characteristics. Constructed 2-3 dimensional attractor system in this study can be used for cutting characteristics evaluation of metals.

A Study on the Characteristics of Ultra-Precision Cutting for Al Alloy (Al합금의 초정밀 절삭특성 연구)

  • 김우순;김동현;난바의치
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.44-49
    • /
    • 2003
  • To obtain the surface roughness with range from 10nm to 1nm we need the study of ultra-precision machine, cutting condition, and materials. In this paper, the optimal cutting conditions for getting mirror surface of aluminum alloy have been examined experimentally by using ultra-precision turning machine and sing1e crystal diamond tool. In generally, the cutting conditions such as feed rate and depth of cut have effect on the surface roughness in ultra-precision turning. The result of surface roughness was measured by the ZYGO New View 200. Therefore, The surface roughness and cutting conditions has been clarified. The smooth surface of aluminum alloy less than 1nm RMS, 1nm Rmax can be obtained by the ultra-precision cutting.

Development of On-machine Measurement System utilizing a Capacitive-type Sensor (정전용량형 센서를 이용한 기상계측시스템의 개발)

  • 김건희;박순섭;박원규;원종호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.391-395
    • /
    • 2002
  • This paper described about the ultra-precision profile measurement of aspheric surfaces using contact probing technique. A contact probe has been designed as a sensing device to obtain measuring resolutions in nanometer regime utilizing a leaf spring mechanism and a capacitive-type sensor. The contact probe is attached on the z-axis during measurement while aspheric objects are supported on the single point diamond turning machine(SPDTM). The machine xz-axis motions are monitored by a set of two orthogonal plane mirror type laser interferometers. Experimental results show that the contact probing technique developed of On-machine Measurement System in this investigation is capable of providing a repeatability of 20 nanometers with a $\pm$20 uncertainty of 300 nanometers.

  • PDF

A study on Ultra Precision machining process for Aspheric (비구면 초정밀절삭 공정기술에 관한 연구)

  • 김건희;홍권희;김효식;김현배;양순철;윈종호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.90-93
    • /
    • 2003
  • This paper described about the ultra-precision profile measurement of aspheric surfaces using contact probing technique. A contact probe has been designed as a sensing device to obtain measuring resolutions in nanometer regime utilizing a circle leaf spring mechanism and a capacitive-type sensor. The, contact probe is attached on the z-axis during measurement while aspheric object are supported on the diamond turning machine(DTM). The machine xz-axis motions are monitored by a set of two orthogonal plane mirror type laser interferometers. Experimental results show that the contact probing technique developed of on-machine measurement system in this investigation is capable of providing a repeatability of 10 nanometers with a $\pm$20 uncertainty of 200nmPv.

  • PDF