• Title/Summary/Keyword: diamond turning

Search Result 150, Processing Time 0.023 seconds

Development of machining system for ultra-precision aspheric lens mold (초정밀 비구면 렌즈 금형가공시스템 개발)

  • Baek, Seung-Yub;Lee, Ha-Sung;Kang, Dong-Myeong
    • Design & Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • As consumer in optics, electronics, aerospace and electronics industry grow, the demand for ultra precision aspherical surface lens increases higher. Precision turning with single-diamond tools has a long history of development for fabrication of optical quality surfaces since the advent of aerostatic rotary spindles and precise linear motion guide ways. To enhance the precision and productivity of ultra precision aspherical surface micro lens, the following specification of ultra precision grinding system is required: the highest rotational speed of the grinder is 100,000rpm and its turning accuracy is $0.1{\mu}m$, positioning accuracy is $0.1{\mu}m$. The development process of the grinding system for the ultra precision aspherical surface micro lens for optoelectronics industry is introduced. In the work reported in this paper, an intelligent grinding system for ultra precision aspherical surface machining was designed by considering the factors affecting the surface roughness and profiles accuracy. An aerostatic form was adopted to build the spindle of the workpiece and the spindle of grinder and ultra precision LM guide way was adopted in this system. And this paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. It results was that a form accuracy of $0.6{\mu}m$ P-V and a surface roughness of $0.006{\mu}m$ Rmax.

  • PDF

Evaluation of a Aluminum Hyperbolic Mirror with the Diameter of 300 mm(f/1.98) by Using the Autostigmatic Null Lens System Assembled in a Fixed Tube Mount (경통고정식 자동무수차점 널 렌즈 테스트법을 이용한 직경 300 mm(f/1.98) 알루미늄 쌍곡면 거울의 형상측정)

  • Lee, Young-Hun;Jo, Jae-Heung;Rim, Cheon-Seog;Yang, Sun-Choel;Kim, Geon-Hee;Won, Jong-Ho;Jeong, Youn-Hong
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.412-419
    • /
    • 2006
  • We design and fabricate an autostigmatic null lens system assembled in a fixed tube mount in order to evaluate the shape of an aluminum hyperbolic mirror with the diameter of 300 mm and the f-number of 1.98, which is fabricated by a high precision aspherical DTM (diamond turning machine). Also, we evaluate the degree of shape of the aspherical mirror by this autostigmatic null lens testing method. The autostigmatic null lens system assembling in a fixed tube mount has several advantages of light weight, good mechanical stability, etc. The permissible fabricating limits of null lenses and a mount are determined by considering various tolerances to assure the measurement reliability.

Machining of Anode and Cavity applying Ultraprecision Machining Characteristics of OXFC (무산소동의 초정밀 절삭 특성을 이용한 아노드 및 캐비티의 가공)

  • 원종호;김주환;박순섭;김건희;김상석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.922-925
    • /
    • 2002
  • Klystron which is micro wave amplifier tube are mainly used in fields of science such as accelerator, nuclear fusion, broadcasting, communication fields, and defense industry fields, tract. The quality of Klystron anode and cavity are determined by form accuracy and roughness of the worked surface. Therefore anode and cavity are restricted the from accuracy strictly and the surface roughness be under Rmax 0.03S. As a work material of anode and cavity, the oxygen-free copper, that is used for optical pares of aerospace and laser mirror is selected. An outside diameter of material is $\Phi$100 mm and an inside diameter is $\Phi$30~33 mm. In this study, to find the optimum ultra precision cuffing condition of oxygen-free copper with diamond turning machine, the surface roughness is examined for various diamond toot nose radius, main spindle speed, fred rate and depth of cut. As a result of experiment, we could machined the anode and cavity with a surface roughness within Ra 3.2 nm, a form accuracy within 0.01 $\mu\textrm{m}$.

  • PDF

초정밀가공 기술의 현황과 전망

  • Gang, Cheol-Hui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.11-20
    • /
    • 1989
  • 마이크로 일렉트로닉스(Microelectronics)를 중심으로 하는 산업혁명이 진행되고 있는 시점에서 전자, 광학 또는 신소재 부품에 대한 형상과 치수 또는 표면거칠기에 대한 정확도와 정밀도가 엄격하게 요구되고 있다. 예를 들어 경취 재료인 반도체의 웨이화( w-afer), 수정진동자 자기헷트, 비구면렌즈 또는 연질 금속의 레이저빔(Laser Beam) 프린터 용 포리곤 밀러(Polygon Mirror), 자기디스크, 복사기용 드럼(drum), 레저기기용 반사밀러 등 가공정밀도를 향상시키기 위해서는 과거의 가공기술을 대치할 수 있는 새로운 초정밀가공 기술의 도입이 활발하게 진행되고 있다. 경취성 재료의 초정밀가공은 지금까지는 랩핑(lappi- ng), 폴리싱(polishing)의 가공기술이 주체였으나, 최근의 엄격한 부품정밀도에 대응하기 위하여 전가공을 초정밀 연삭가공으로 평면도,표면거칠기, 가공변질층을 향상시키고 다듬질 가공은 폴리싱으로 하여 표면거칠기를 향상시켜야 하는 가공기술이 보급되고 있다. 일반연질 금속의 다듬질가공은 유리지립을 이용하는 랩핑이나 폴리싱으로 다듬질 가공을 진행하고 있었 으나 형상정도와 표면정밀도를 동시에 얻는다는 것이 어렵고 또 가공시간이 너무 길어서 매우 고가인 것이 되고 말았다. 그러나 유리에서 연질금속으로 재료를 전환시키고 저가격화, 양산 화의 요구, 정밀도 향상과 부품의 안정화 등등 여러 이유로서 다아아몬드(Diamond) 공구로 mirror surface 를 만드는 초정밀 경면연삭 가공기술(precision turning with diamond)의 발달 로 이제는 완전히 새로운 가공기술로 대치되고 말았다. 다이아몬드에 의한 초정밀절삭은 공구 끝이 매우 예리하고 마모가 매우 적은 단결정 다이아몬드를 이용하고 절삭가공 기계는 운동정도 를 피가공물에 정확히 전사 시키는 방법이며 따라서 가공기계는 고도의 운동정밀도가 요구되며 그외에 강성, 진동, 열변이, 제어면에서 엄격한 검도가 있어야 한다.

  • PDF

Parabolic mirror test using Computer Generated Hologram (Computer Generated Hologram을 이용한 포물명경 형상측정)

  • 김성하;곽종훈;최옥신;송재봉;이윤우;이인원
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.2
    • /
    • pp.80-84
    • /
    • 2000
  • Parabolic almninium mlITOr of m.5('||'&'||'cent; 50 nun) was fabncated by a diamond tummg machine. Computer generated hologram (CGH) for the test of parabolic mirror was encoded by binary phase hologram Approximation of curved fringe to line was made by staircase encoding. After fringe data 1ransformed mto a Post Scnpt file. magnified master CGH was printed by a laser printer, and then it reduced to the photographIc film. Parabolic mirror was tested by Twyman-Green interferometer with CGH at VIewing arm. Its experimental result was compared with those of surface profile and auto-collimatIon test, and then the errors were analyzed.

  • PDF

The Comparison of Cutting Characteristics of PCD and MCD Tools in the Ultraprecision Turning of Aluminum Alloy (알루미늄 합금의 초정밀 선삭 가공에 있어서 PCD와 MCD 공구의 절삭 특성 비교)

  • Kim, Hyeong-Cheol;Ham, Seung-Deok;Hong, U-Pyo;Park, Yeong-U;Kim, Gi-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.68-75
    • /
    • 2000
  • This paper presents the construction of an ultra-precision machining system and machining experiments using the developed system. The system is composed of air bearing system, granite bed, air pad, and linear feeding mechanism. The cutting conditions have great effect on the surface quality in ultra-precision machining. the ultra-precision machining is mainly processed by several ${\mu}{\textrm}{m}$ depth of cut and feed rate. For this, tools with sharper cutting edge and less tool wear are needed. To satisfy these requirement, diamond is generally used as a tool material for ultra-precision machining. In order to evaluate the cutting characteristics of the PCD and MCD tools on the aluminum alloy, the machining experiments performed using the developed system.

  • PDF

Wear Mechanism and Machinability of PCD Tool in Turning Tungsten Carbides (초경합금재의 선반절삭에 있어서 PCD공구의 마멸 기구와 절삭성)

  • Heo, Sung Jung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.85-91
    • /
    • 2013
  • The machinability of wear-resistible tungsten carbides and the tool wear behavior in machining of V30 and V50 tungsten carbides using PCD (Poly Crystalline Diamond) cutting tool was investigated to understand machining characteristics. This material is one of the difficult-to-cut materials in present, but their usage has been already broadened to every commercial applications such as mining tools, and impact resistant tools etc. Summary of the results are as follows. (1) Tool wear progression of PCD tools in turning of wear-resistible tungsten carbides were observed specially fast in primary cutting distance within 10m. (2) Three components of cutting resistance in this research were different in balance from the ordinary cutting such as that cutting of steel or cast iron. Those were expressed large value by order of thrust force, principal force, feed force. (3) If presume from viewpoint of high efficient cutting within this research, a proper cutting speed was 15m/min and a proper feed rate was 0.1mm/rev. In this case, it was found that the tool life of PCD tool was cutting distance until 230m approximately. (4) In cutting of wear-resistible tungsten carbides such as V30 and V50, it was recognized that the tool wear rate of V30 was very fast as compared with V50. (5) When the depth of cut was 0.1mm, there was no influence of the feed rate on the feed force. And the feed force tended to decrease as the cutting distance was long, because the tool was worn and the tool edge retreated. (6) It was observed that the tungsten carbides were adhered to the flank.

Research on the machinability in Micro Machining (초미세가공에서 절삭성 고찰)

  • 정종운;김재건;고태조;김희술;박종권
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.99-104
    • /
    • 2004
  • Micro/meso cutting is getting more important in the fields of precision machining technology. A micro-turning lathe is one of parts to consist the Micro Factory. It accepts stepwise motion actuators that are used for feeding system instead of the conventional mechanism. It is consisted of two Piezoelectric ceramics; one is for feeding the slider, and the other is for clamping the slider in the guide way of the body. The linearity and positional accuracy of the actuators are good enough for high precision motion. The spindle unit is operated with DC motor on the top of the slider. The motion is communicated with miniaturized linear encoder attached on each side of axis. A mono crystal diamond tool is used for cutting tool. This micro-lathe has been made a machining experiment to see the characteristics of micro-machining.

  • PDF

A study on the manufacture of Large Collimation Reflector using SPDT (SPDT를 이용한 대구경 Collimation Reflector 가공 연구)

  • 김건희;홍권희;김효식;박지영;박순섭;원종호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.897-900
    • /
    • 2002
  • The collimation mirror will be used for thermal vacuum testing of spacecraft. The reflection mirror system to generate parallel beam inside the thermal vacuum chamber. A 600mm diameter aspheric Collimation mirror was fabricated by ultra-precision single point diamond turning (SPDT). Aluminum alloy for mirror substrates is known to be easily machining, but not polishable due to its ductility. Aspheric large collimation reflector without a conventional polishing process, the surface roughness of 10nmRa, and the from error of $\lambda/2 ~\lambda/4(\lambda$ =632.8 nm) for reference curved surface 600 mm has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of A16061-T651 and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

  • PDF

The Control and Motion Characteristics of 5 axis Vacuum Stage for Electron Beam Lithography (전자빔 가공기용 진공 5축 스테이지의 제어 및 운동특성)

  • 이찬홍;박천홍;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.890-893
    • /
    • 2004
  • The ultra precision machining in industrial field are increased day by day. The diamond turning has been used generally, but now is faced with limitation of use, because of higher requirement of production field. The electron beam lithography is alternative in machining area as semiconductor production. For EB lithography, 5 axis vacuum stage is required to duplicate small and large patterns on wafer. The stage is composed of 2 rotational axis and 3 translational axis with 5 DC servo motors. The positioning repeatability and resolution of Z axis feed unit are 3.21$\mu$m and 0.5 $\mu$m/step enough to apply to lithography.

  • PDF