• 제목/요약/키워드: diamond thin film

검색결과 235건 처리시간 0.028초

다이아몬드 박막기술 (Diamond Thin Film Technology)

  • 이지화
    • 공업화학
    • /
    • 제1권1호
    • /
    • pp.11-22
    • /
    • 1990
  • 다이아몬드가 준안정상태로 존재하는 조건(저압 및 저온) 하에서 화학증착시키는 방법이 80년대에 개발되어 새로운 다이아몬드 코팅기술로 등장하고 있다. 여기서는 여러가지 CVD 방법을 장단점과 함께 소개하였다. 다이아몬드 박막의 성장에 관련된 반응기구와 수소원자의 역할을 논하였으며, 또 장래의 연구분야와 응용을 전망하였다.

  • PDF

PECVD법에 의한 DLC 박막의 증착 (Deposition of Diamond Like Carbon Thin Films by PECVD)

  • 김상호;김동원
    • 한국표면공학회지
    • /
    • 제35권2호
    • /
    • pp.122-128
    • /
    • 2002
  • This study was conducted to synthesize the diamond like carbon films by plasma enhanced chemical vapor deposition (PECVD). The effects of gas composition on growth and mechanical properties of the films were investigated. A little amount of hydrogen or oxygen were added to base gas mixture of methane and argon. Methane dissociation and diamond like carbon nucleation were enhanced by installing negatively bias grid near substrate. The deposited films were indentified as hard diamond like carbon films by micro-Raman spectroscopy. The surface and fractured cross section of the films which were observed by scanning electron microscopy showed that film growth is very slow as about 0.3$\mu\textrm{m}$/hour, and relatively uniform with hydrogen addition. Vickers hardness of tungsten carbide (WC) cutting tool increased from about 1000 to 1600~1800 by deposition of DLC film, that of commercial TiN coated tool was about 1270. In cutting test of aluminum 6061 alloy, DLC coated cutting tool showed 1/3 or lower crater and flank wear than TiN coated or non-coated WC cutting tools.

CH3OH/H2O 가스의 기상활성법을 이용한 다이아몬드 박막성장 과정에서의 OES분석 (OES Analysis for Diamond Film Growth by Vapor Activation Method Using CH3OH/H2O Gas)

  • 이권재;고재귀;신재수
    • 한국재료학회지
    • /
    • 제13권1호
    • /
    • pp.31-35
    • /
    • 2003
  • The intensity is measured as functions of both distance from filament to substrate and $CH_3$OH/($CH_3$OH+$H_2$O) ratio by OES(Optical Emission Spectroscopy) to investigate the effects of activation species such as $H_{\alpha}$, $H_{\beta}$, H$\Upsilon\;C_3$, CH on diamond film growth.$ H_{\alpha}$ increases as $CH_3$OH composition decreases, while CH increases as $CH_3$OH composition increases. The intensity of $H_{\alpha}$ decreases as the distance increases and that of CH increases as the distance increases. The intensities of other activation species of $H_{\beta}$, H$\Upsilon\;C_3$, do not vary as a function of measured position distance. It varies randomly. It means that various parameters for depositing diamond thin film can be explained by the intensity(density) change of activation species, as a function of the distance of the filament.

a-C:H 박막을 이용한 이온빔 배향 TN 셀의 Electro-Optical 특성에 관한 연구 (A Study on Electro-Optical Characteristics of the Ion Beam Aligned TN Cell on the a-C:H Thin Film)

  • 박창준;조용민;황정연;서대식;노순준;백홍구;정연학
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 제5회 학술대회 논문집 일렉트렛트 및 응용기술연구회
    • /
    • pp.57-60
    • /
    • 2003
  • Electro-Optical (EO) performances for the ion beam (IB) aligned twisted-nematic (TN)-liquid crystal display (LCD) with ion beam exposure on the new of diamond like carbon (DLC) thin film surface were investigated. Voltage-transmittance (V-T) curve and response time without backflow bounce in the ion beam aligned TN-LCD with ion beam exposure for 0.5 and 1min on the DLC thin film was observed. Also. the fast response time of ion beam aligned TN-LCD with ion beam exposure for 1min on the DLC thin film surface can be achieved. The residual DC voltage of the ion beam aligned TN-LCD on the DLC thin film surface was almost the same as that of the rubbing aligned TN-LCD on the polyimide(PI) surface.

  • PDF

Solid Lubrication Characteristics of DLC Coated Alumina Seals in High Temperature

  • 옥철호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.356-356
    • /
    • 2007
  • Plasma immersion ion beam deposition (PIIBD) technique is a cost-effective process for the deposition of diamond like carbon thin film, the possible solid lubricant on large surface and a complex shape. We used PIIB process for the preparation of DLC thin film on $Al_2O_3$ with deposition conditions of deposition temperature range $200^{\circ}C$, working gas pressure of 1.310-1Pa. DLC thin films were coated by $C_2H_2$ ion beam deposition on $Al_2O_3$ after the ion bombardment of SiH4 as the bonding layer. Energetic bombardment of $C_2H_2$ ions during the DLC deposition to ceramic materials generated mixed layers at the DLC-Si interface which enhanced the interface to be highly bonded. Wear test showed that the low coefficient of friction of around 0.05 with normal load 2.9N and proved the advantage of the low energy ion bombardment in PIIBD process which improved the tribological properties of DLC thin film coated alumina ceramic. Furthermore, PIIBD was recognized as a useful surface modification technique for the deposition of DLC thin film on the irregular shape components, such as molds, and for the improvement of wear and adhesion problems of the DLC thin film, high temperature solid lubricant.

  • PDF

Microwave plasma CVD에서 Ni 기판에 다이아몬드 박막 증착 (Diamond thin film deposition on Ni in microwave plasma CVD)

  • 김진곤;류수착;조현
    • 한국결정성장학회지
    • /
    • 제12권6호
    • /
    • pp.311-316
    • /
    • 2002
  • 2-step 증착법과 Bias-Enhanced Nucleation(BEN)법을 이용해 다결정 Ni 기판에 고품질의 다이아몬드 박막 합성을 연구하였다. $810^{\circ}C$에서 1시간 증착하여 soot충을 형성시킨 후 기판온도를 soot층의 형성이 억제되는 온도인 $925^{\circ}C$로 올려 5시간 증착하는 2-step법을 통해 고품질의 다이아몬드를 합성할 수 있었다. 또한, $925^{\circ}C$에서 -220V의 bias를 10분 동안 기판에 인가한 후 2시간 동안 증착하는 BEN법을 이용해 양질의 다이아몬드를 합성할 수 있었다. $925^{\circ}C$에서 bias 처리를 하지 않은 경우에는 10시간 동안 증착을 시도한 후에도 다이아몬드가 생성되지 않았다.

MPCVD를 이용한 다결정 다이아몬드 박막의 증착 및 물성 분석 (Characterization of polycrystalline diamond thin films deposited by using an MPCVD)

  • 이진복;박진석;류경선;권상직
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1330-1332
    • /
    • 1998
  • Polycrystalline diamond films are deposited on a Si substrate by employing a 2.45 GHz $\mu$-wave plasma CVD system. Prior to depositing the diamond film, a DPR(diamond photo-resist) layer is coated to enhance the nucleation density. The growth rate of diamond films increases with the $\mu$-wave power and approaches to be about $1.5{\mu}m/hr$ at 1100 W. Structural properties of diamond films deposited are characterized from their SEM photographs, Raman spectra, and AFM surface images. Lager grain size, higher intensity of diamond peak, and smoother surface are observed for films deposited at a higher power. The possible mechanism on the diamond growth is also discussed to explain the experimental results.

  • PDF

EO Performances of the Ion Beam Aligned TN-LCD on a Diamond-like-Carbon Thin Film Surface

  • Hwang, Jeoung-Yeon;Jo, Yong-Min;Seo, Dae-Shik;Rho, Soon-Joon;Baik, Hong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.497-499
    • /
    • 2003
  • Electro-optical (EO) performances of the ion beam aligned twisted nematic (TN)-liquid crystal display (LCD) with oblique ion beam exposure on the DLC thin film surface were studied. An excellent voltage-transmittance (VT) curve of the ion beam aligned TN-LCD was observed with oblique ion beam exposure on the DLC thin film surface for 1 min. Also, a faster response time for the ion beam aligned TN-LCD can be achieved with oblique ion beam exposure on the DLC thin film surface for 1 min can be achieved.

  • PDF

마이크로웨이브 플라즈마 CVD에 의한 나노결정질 다이아몬드 박막 성장 시 DC 바이어스 효과 (Effect of DC Bias on the Growth of Nanocrystalline Diamond Films by Microwave Plasma CVD)

  • 김인섭;강찬형
    • 한국표면공학회지
    • /
    • 제46권1호
    • /
    • pp.29-35
    • /
    • 2013
  • The effect of DC bias on the growth of nanocrystalline diamond films on silicon substrate by microwave plasma chemical vapor deposition has been studied varying the substrate temperature (400, 500, 600, and $700^{\circ}C$), deposition time (0.5, 1, and 2h), and bias voltage (-50, -100, -150, and -200 V) at the microwave power of 1.2 kW, working pressure of 110 torr, and gas ratio of Ar/1%$CH_4$. In the case of low negative bias voltages (-50 and -100 V), the diamond particles were observed to grow to thin film slower than the case without bias. Applying the moderate DC bias is believed to induce the bombardment of energetic carbon and argon ions on the substrate to result in etching the surfaces of growing diamond particles or film. In the case of higher negative voltages (-150 and -200 V), the growth rate of diamond film increased with the increasing DC bias. Applying the higher DC bias increased the number of nucleation sites, and, subsequently, enhanced the film growth rate. Under the -150 V bias, the height (h) of diamond films exhibited an $h=k{\sqrt{t}}$ relationship with deposition time (t), where the growth rate constant (k) showed an Arrhenius relationship with the activation energy of 7.19 kcal/mol. The rate determining step is believed to be the surface diffusion of activated carbon species, but the more subtle theoretical treatment is required for the more precise interpretation.

레이저 공정변수 변화에 따른 다이아몬드상 카본박막의 전계방출 특성분석 (Investigation on field emission properties of diamond-like carbon thin film by variation of laser processing parameters)

  • 심경석;이상렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1511-1513
    • /
    • 1999
  • In order to investigate the properties of diamond-like carbon(DLC) thin films depending on the deposition parameters, DLC thin films were systematically fabricated by pulsed laser deposition (PLD), DLC thin films have been shown advantageous field emission properties due to a negative electron affinity (NEA) and a low work function. At the atomic level. DLC is referred to the group of carbon materials with strong chemical bonding composition of $sp^2$ and $sp^3$ arrangements of atoms incorporated with an amorphous structure. The experiment was performed at substrate temperature in the range of room temperature to $600^{\circ}C$. The laser energy densiy was used to be in the range of $6J/cm^2$ to $20J/cm^2$, SEM, Raman, PL, XPS and field emission characteristics were used to investigate the DLC thin films.

  • PDF