• 제목/요약/키워드: diamond grinding

검색결과 190건 처리시간 0.024초

전해 인프로세스 드레싱을 이용한 Optical glass계의 경면연삭에 관한 연구 (A Study on the Mirror Surface Grinding of Optical Glass Utilizing Electrolytic In-Process Dressing)

  • 조주현;원종호;박원규;이진오;김민수;김성수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.410-415
    • /
    • 2003
  • Electrolytic In-process Dressing (ELID) technique for metal bonded diamond grinding wheel has been developed for mirror surface grinding of hard and brittle materials. This study process optical glass in using Electrolytic In-process Dressing. In using to main variable wheel speed (400rpm~2000rpm),feed rate (5$\mu\textrm{m}$/min~25$\mu\textrm{m}$/min),depth of cut (3$\mu\textrm{m}$~5$\mu\textrm{m}$),dressing and spray. We measured surface roughness in representative brittle materials

  • PDF

화인세라믹스의 고능률적 평면 연삭가공을 위한 실험적 연구(I) (Stduy on the Surface Grinding Machining of Fine-ceramics with high efficiency)

  • 강재훈;이재경
    • 한국정밀공학회지
    • /
    • 제7권4호
    • /
    • pp.40-54
    • /
    • 1990
  • Recently, Fine Ceramics have been concerned significantly with some excellent properties and many functions as new industrial materials to the industry at alrge. For the manufacture of Fine Ceramics, sintering is essential process. Thus the most of a Fine Ceramics used for precision parts are in need of machining proces. It is, however, very difficult to manufacture the Advanced Ceramics with high efficiency because they have not only high strength and brittl- eness but also high hardness. In present research, experiments are carried out to obtain the basic knowledge of Fine Ceramics grinding with high efficiency. Representative advanced ceramics, such as A1/sub 2/0/sub 3/, Z/sub r/O/sub 2/SiC snd Si/sub 2/N/sub 4/are ground with diamond wheels using conventional surface grinding machine. This research is carried out for the purpose of saving machining technology required for manufactiring Fine Ceramics parts

  • PDF

초소형 초광각 비구면 유리렌즈의 초정밀 연삭가공기술에 관한 연구 (An Research on Ultra Precisive Polishing Manufacturing Technology of Glass for Micromini and Super Wide-Angle Aspherics Glasses Lens.)

  • 김두진;유경선;현동훈
    • 한국생산제조학회지
    • /
    • 제19권2호
    • /
    • pp.275-281
    • /
    • 2010
  • This research's goal is to process directly aspherics with big sagment and thin center thickness. If we can process directly aspherics with big sagment and thin center thickness, we think it greatly helps to reduce the time of developing optical system. We made very thin glass using diamond grinding whetstone regarding the trace of tool and the detailed drawing of tool super precisive aspherics that has 0.46mm center thickness and over $30^{\circ}$ segment, $0.1{\mu}m$ machining accuracy, 15nm surface accuracy. We think this research's result will be effective to open new market because it is applied not only cell phone optical system but also CCTV robot optical system, internet phone optical system. Also we expect to enhance the super strong brittle precisive process's possibility with super precisive processing technique that achieves 0.46mm glass center thickness as first in the world.

작업부하 및 발열 모니터링에 의한 엔진블록 호닝스톤 연삭성 평가 (Evaluation of the Grinding Performance of an Engine Block Honing Stone through Monitoring of Workload and Heat Generation)

  • 윤장우;김상범
    • 한국기계가공학회지
    • /
    • 제18권4호
    • /
    • pp.69-75
    • /
    • 2019
  • Since gasoline engines are based on a combination of a cast iron liner and an aluminum block, which have different thermal properties and stiffnesses, bore shape distortion is likely to occur during honing due to uneven thermal deformation. To solve this problem, many tests and evaluations are needed to support the development of a high-performance honing stone with low heat generation. Moreover, performance evaluation, which depends on inspection and observation after work, often requires much trial and error to optimize tool design, due to challenges in the accurate interpretation of results. This study confirmed that the assessment of grinding capability was clarified by evaluating performance under severe work conditions and by in-situ measurement and recording of current consumption (workload) and heat generation during operation. As a result of using a honing stone with excellent grinding performance in engine block manufacture-in which cylinder bore distortion caused by thermal deformation during manufacture is a problem-a noticeable improvement in the degree of cylindricity was observed.

랩그라인딩 후 사파이어 웨이퍼의 표면거칠기가 화학기계적 연마에 미치는 영향 (Effect of Surface Roughness of Sapphire Wafer on Chemical Mechanical Polishing after Lap-Grinding)

  • 서준영;이현섭
    • Tribology and Lubricants
    • /
    • 제35권6호
    • /
    • pp.323-329
    • /
    • 2019
  • Sapphire is currently used as a substrate material for blue light-emitting diodes (LEDs). The market for sapphire substrates has expanded rapidly as the use of LEDs has extended into various industries. However, sapphire is classified as one of the most difficult materials to machine due to its hardness and brittleness. Recently, a lap-grinding process has been developed to combine the lapping and diamond mechanical polishing (DMP) steps in a single process. This paper studies, the effect of wafer surface roughness on the chemical mechanical polishing (CMP) process by pressure and abrasive concentration in the lap-grinding process of a sapphire wafer. In this experiment, the surface roughness of a sapphire wafer is measured after lap-grinding by varying the pressure and abrasive concentration of the slurry. CMP is carried out under pressure conditions of 4.27 psi, a plate rotation speed of 103 rpm, head rotation speed of 97 rpm, and slurry flow rate of 170 ml/min. The abrasive concentration of the CMP slurry was 20wt, implying that the higher the surface roughness after lapgrinding, the higher the material removal rate (MRR) in the CMP. This is likely due to the real contact area and actual contact pressure between the rough wafer and polishing pad during the CMP. In addition, wafers with low surface roughness after lap-grinding show lower surface roughness values in CMP processes than wafers with high surface roughness values; therefore, further research is needed to obtain sufficient surface roughness before performing CMP processes.

초정밀 금형가공기를 이용한 비구면 렌즈 가공특성 연구 (Characteristics of aspheric lens processing using ultra-precision moulds processing system)

  • 백승엽;이하성;강동명
    • Design & Manufacturing
    • /
    • 제1권1호
    • /
    • pp.7-11
    • /
    • 2007
  • The fabrication of precision optical components by deterministic CNC grinding is an area of great current interest. Replacement of the traditional, craftsman driven, optical fabrication process is essential to reduce costs and increase process flexibility and reliability. Moreover, CNC grinding is well suited to the fabrication of complex shapes such as aspheres, making it possible to design optical systems with fewer components and reduced weight. Current technology is capable of producing surfaces with less than 2 microns peak to valley error, 50 nm rms surface roughness, and less than 1 micron subsurface damage. Bound abrasive tools, in which the abrasive particles are fixed in a second (matrix) material, play an important part in achieving this performance. In this paper, the factors affecting the ultra-fine surface roughness and profile accuracy of machined surfaces of aspheric parts has been analyzed experimentally and theoretically and on ultra-precision aspheric grinding system and precise adjusting mechanism have been designed and manufactured. In the paper we report the results of experiments and modeling performed to examine the effects of machinability, occurring during grinding of optical surfaces, on the tool surface profile. Profiles of machined surface were measured by using SEM. In order to optimize grinding conditions of aspheric lens processing, we performed experiments by design of experiments.

  • PDF

우주망원경용 비구면 반사경 표면조도 향상을 위한 진화형 수치제어 연삭공정 모델 (NOVEL CNC GRINDING PROCESS CONTROL FOR NANOMETRIC SURFACE ROUGHNESS FOR ASPHERIC SPACE OPTICAL SURFACES)

  • 한정열;김석환;김건희;김대욱;김주환
    • Journal of Astronomy and Space Sciences
    • /
    • 제21권2호
    • /
    • pp.141-152
    • /
    • 2004
  • 우주망원경용 비구면 반사경 가공 공정은 고정입자 연삭, 자유입자 래핑, 연마의 순서를 따른다. 숙련공에 의한 경험적 공정조절에 의해 목표 비구면을 가공하는 전통적 연삭 공정에서는 수 ${mu}m$ 높이의 표면 밑 손상을 남기며 뒤이은 자유입자 래핑 및 연마 공정에서 이를 제거하며 가공한다. 본 연구는 컴퓨터 수치 제어 연삭 공정진화 모델을 개발하여, 연삭가공을 통해 반사경 표면조도 최소 40nm이하, 가공 예측정확도 20nm급을 이루었다. 구체적인 방법론으로 초정밀가공기의 연삭모듈을 이용하여 연삭 휠 입자의 크기, 이송속도, 공작물 회전선속도 등 연삭 변수를 변화시키며 직경 20, 100mm Zerodur 소재를 초기 연삭하였다. 초기 연삭 변수와 측정된 표면조도와의 관계를 경험적 해석과 다 변수 회귀분석 해석 방법을 통하여 공정조절용 수치 연삭 모델을 구성하였다. 정량적 공정제어는 입력된 연삭변수들로부터 가공 후 표면조도를 예측하고, 측정된 표면조도를 이용하여 수치연삭 모델을 개량한 후 다음 가공에서 측정될 표면조도를 예측하는 순으로 만복 진행되었다. 본 연구에서는 CNC 연삭공정조절로부터 최소 평균 표면조도 36nm, 예측정확도 ${pm}20nm$를 얻었다. 이 연구결과는 정량적 연삭공정제어 모델을 사용하여 자유입자 래핑 공정을 수행할 필요 없이 연삭에서 직접 연마 공정으로 진행할 수 있는 획기적인 공정 효율 향상을 의미한다.

CBN 단입자의 연삭특성에 관한 연구 (A study on grinding characteristics of CBN single abrasive grain)

  • 팽현진;손명환
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1533-1541
    • /
    • 1990
  • 본 연구에서는 초입자인 CBN단입자와 기존의 연삭입자인 SiC단입자를 연삭입 자로 하고, 경강과 연강의 공작물재료를 단입자로 연삭했을 때의 표면거칠기 특성을 단입자의 절삭현상으로부터 비교 구명하고 CBN입자에 의한 연삭의 경우가 표면거칠기 가 악화하는 원인을 구명함으로써 이것을 토대로 하여 CBN입자의 실용 보편화의 자료 로 삼고자 하였다.

다결정 다이아몬드의 와이어방전가공에 관한 연구 (The Study on the WEDM of Polycrystalline Diamond)

  • 김창호;강재원;오장욱;서재봉
    • 한국기계가공학회지
    • /
    • 제7권3호
    • /
    • pp.67-74
    • /
    • 2008
  • Polycrystalline diamonds(PCD) tools are widely used in machining a large variety of advanced materials. However, the manufacture of PCD tool blanks is not an economical process. The shaping of PCD blanks with conventional machining methods(such a grinding) is long, labor-intensive process. This paper reports experimental investigation of the influence of electrical machining conditions on the metal removal rate of WEDM of PCD. Experimental results show that the longer pulse-on time and the shorter pulse-off time increase the metal removal rate and worsen the surface quality. The smaller grain size of diamond yields the metal removal rate and shows the better surface quality. Higher electrical conductivity of water yields worse surface roughness.

  • PDF

원추형상을 이용한 비구면 형상가공에 관한 연구 (A Study on Machining of Aspherical Surface using a cone.)

  • 이상민;박철우;이종항
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1348-1352
    • /
    • 2004
  • An aspherical lens in information technology has been increased in order to enhance the optical performances. There are two kinds of approaches to machine the aspherica surface is generally conducted by the diamond turning machine, precision grinding machine, and polishing machine. This technique, however, has a problem which needs an expensive and high precision machine in order to increase the surface roughness and the machining accuracy. In this paper, a machine, which is able to machine the aspherical surface, was developed to decrease the cost. Also, the machining of the aspherical surface using a cone was carried out experimentally in order to compare the experiment with the simulation. The results showed that the machining experiments of the aspherical surface by using the titled cone were in accordance with the simulation.

  • PDF