• Title/Summary/Keyword: diameter of breast height(DBH)

Search Result 162, Processing Time 0.019 seconds

Carbon Reduction by and Quantitative Models for Landscape Tree Species in Southern Region - For Camellia japonica, Lagerstroemia indica, and Quercus myrsinaefolia - (남부지방 조경수종의 탄소저감과 계량모델 - 동백나무, 배롱나무 및 가시나무를 대상으로 -)

  • Jo, Hyun-Kil;Kil, Sung-Ho;Park, Hye-Mi;Kim, Jin-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.3
    • /
    • pp.31-38
    • /
    • 2019
  • This study quantified, through a direct harvesting method, storage and annual uptake of carbon from open-grown trees for three landscape tree species frequently planted in the southern region of Korea, and developed quantitative models to easily estimate the carbon reduction by tree growth for each species. The tree species for the study included Camellia japonica, Lagerstroemia indica, and Quercus myrsinaefolia, for which no information on carbon storage and uptake was available. Ten tree individuals for each species (a total of 30 individuals) were sampled considering various stem diameter sizes at given intervals. The study measured biomass for each part of the sample trees to quantify the total carbon storage per tree. Annual carbon uptake per tree was computed by analyzing the radial growth rates of the stem samples at breast height or ground level. Quantitative models were developed using stem diameter as an independent variable to easily calculate storage and annual uptake of carbon per tree for study species. All the quantitative models showed high fitness with $r^2$ values of 0.94-0.98. The storage and annual uptake of carbon from a Q. myrsinaefolia tree with dbh of 10 cm were 24.0 kg and 4.5 kg/yr, respectively. A C. japonica tree and L. indica tree with dg of 10 cm stored 11.2 kg and 8.1 kg of carbon and annually sequestered 2.6 kg and 1.2 kg, respectively. The above-mentioned carbon storage equaled the amount of carbon emitted from the gasoline consumption of about 42 L for Q. myrsinaefolia, 20 L for C. japonica, and 14 L for L. indica. A tree with the diameter size of 10 cm annually offset carbon emissions from gasoline use of approximately 8 L for Q. myrsinaefolia, 5 L for C. japonica, and 2 L for L. indica. The study pioneers in quantifying biomass and carbon reduction for the landscape tree species in the southern region despite difficulties in direct cutting and root digging of the planted trees.

Ecological Characteristics and Management Plan of Geumdangsil Pine Forest of Yecheon (예천 금당실 송림의 생태적 특성 및 관리방안)

  • Lee, Soo-Dong;Lee, Chan;Kim, Donwook;Kim, Jisuk
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.6
    • /
    • pp.718-732
    • /
    • 2013
  • The purpose of this study was to provide data for the basic research to found the effective conservation and management plan for the Geumdangsil Pine Forest of Yecheon designated as Natural Monument No. 469. Furthermore, this paper suggest efficient sustainable forest preservation and using. In order to achieve the sustainable forest preservation, this study was to analyse topography, land use, tree growth, soil environment, forest usage and forest management, etc. According to analysis the results, the site area is located in the flatlands where is from 130 to 140 m above sea level. The around forest was transformed into agricultural land. The 565 individuals of Pinus densiflora grows in the forest, whereas, 25 trees was cut down or died. There are signs of 25 stumps. The most of 565 trees' diameter at breast height(DBH) was centerized between 30 cm and 50 cm, moreover, the average life expectancy of trees were 85.4 years. The oldest age of tree was estimated to be 200 years. The Sample trees of rate of branch growth is from 4.3 cm to 5.1 cm per year. The middle branch which is more vigorous growth grow 24.2 cm for 3 years. Moreover, the result of soil physico-chemical properties analysis of 7 plots, 4 categories which is soil organic matter, total nitrogen, available phosphoric acid, specific electrical conductance was generally good, however, the 2 categories which is soil pH, exchangeable cation needed improvement. Currently, the site was not pressured by facilities and usage, however, there might be threaten by agriculture such as encroaching on forest. Therefore, there should establish comprehensive ecosystem management such as facility management, visitors management and operation management In this paper considered 4 fields that is ecosystem management, facility management, visitors management and operation management for sustainable management.